Ian Jauslin
summaryrefslogtreecommitdiff
blob: 2354d061ad2625c9dcaf31c397cc69b6f914b60a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
\documentclass{ian-presentation}

\usepackage[hidelinks]{hyperref}
\usepackage{graphicx}
\usepackage{array}

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf\Large
\hfil Lieb's simplified approach to interacting Bose gases\par
\vfil
\large
\hfil Ian Jauslin
\normalsize
\vfil
\hfil\rm joint with {\bf Eric Carlen}, {\bf Elliott H. Lieb}\par
\vfil
\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
\eject

\setcounter{page}1
\pagestyle{plain}

\title{Bose gas}
\hfil\includegraphics[height=6cm]{BEC.png}
\vfill
\eject

\title{Interacting Bose gas}
\begin{itemize}
  \item State: symmetric wave functions in a finite box of volume $V$ with periodic boundary conditions:
  $$
    \psi(x_1,\cdots,x_N)
    ,\quad
    x_i\in \Lambda_d:=V^{\frac1d}\mathbb T^d
  $$
  \item $N$-particle Hamiltonian:
  $$
    H_N:=
    -\frac12\sum_{i=1}^N\Delta_i
    +\sum_{1\leqslant i<j\leqslant N}v(|x_i-x_j|)
  $$
  with a repulsive, integrable interaction: $v(|x-y|)\geqslant 0$, $\int dx\ v(x)<\infty$.

\end{itemize}
\vfill
\eject

\title{Interacting Bose gas}
\begin{itemize}
  \item Ground state:
  $$
    H_N\psi_0=E_0\psi_0
    ,\quad
    E_0=\min\mathrm{spec}(H_N)
  $$
  \item Compute the ground state-energy per particle in the thermodynamic limit:
  $$
    e_0:=\lim_{\displaystyle\mathop{\scriptstyle V,N\to\infty}_{\frac NV=\rho}}\frac{E_0}N
  $$
\end{itemize}
\vfill
\eject

\title{Energy}
\begin{itemize}
  \item Integrate $H_N\psi_0=E_0\psi_0$:
  $$
    \frac{E_0}N=\frac{N-1}{2V}\int dx\ v(|x-y|)g_2(x,y)
  $$
  \item $g_n$: marginal of $\psi_0$
  $$
    g_n(x_1,\cdots,x_n):=\frac{V^n\int dx_{n+1}\cdots dx_N\ \psi_0(x_1,\cdots,x_N)}{\int dx_1\cdots dx_N\ \psi_0(x_1,\cdots,x_N)}
  $$
  \item $\psi_0\geqslant 0$, so it can be thought of as a probability distribution
\end{itemize}
\vfill
\eject

\title{Hierarchy}
\vskip-10pt
\begin{itemize}
  \item Equation for $g_2$: integrate $H_N\psi_0=E_0\psi_0$ with respect to $x_3,\cdots,x_N$:
  $$
    \begin{array}{>\displaystyle l}
      -\frac12(\Delta_x+\Delta_y) g_2(x,y)
      +\frac{N-2}V\int dz\ (v(|x-z|)+v(|y-z|))g_3(x,y,z)
      \\[0.5cm]\hfill
      +v(|x-y|)g_2(x,y)
      +\frac{(N-2)(N-3)}{2V^2}\int dzdt\ v(|z-t|)g_4(x,y,z,t)
      =E_0g_2(x,y)
    \end{array}
  $$
  \item Factorization assumption:
  $$
    g_3(x_1,x_2,x_3)=g_2(x_1,x_2)g_2(x_1,x_3)g_2(x_2,x_3)
  $$
  $$
    g_4(x_1,x_2,x_3,x_4)=\prod_{i<j}(g_2(x_i,x_j)+O(V^{-1}))
  $$
\end{itemize}
\vfill
\eject

\title{Lieb's simple equation}
\begin{itemize}
  \item In the thermodynamic limit, after making a few additional assumptions, \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}:
  $$
    (-\Delta+v(|x|)+4e_0)u(|x|)=v(|x|)+2e_0\rho\ u\ast u(|x|)
  $$
  $$
    e_0=\frac\rho2\int dx\ (1-u(|x|))v(|x|)
  $$
  \item with $\rho:=\frac NV$
  $$
    g_2(x,y)=1-u(|x-y|)
    ,\quad
    u\ast u(|x|):=\int dy\ u(|x-y|)u(|y|)
  $$
\end{itemize}
\vfill
\eject

\title{One dimension}
\hfil\includegraphics[height=6cm,angle=0.4]{1d.png}
\vfill
\eject

\title{Numerical solution for $v(x)=e^{-|x|}$ in 3 dimensions}
\hfil\includegraphics[height=6cm]{erho_bare.pdf}
\vfill
\eject

\title{Numerical solution for $v(x)=e^{-|x|}$ in 3 dimensions}
\hfil\includegraphics[height=6cm]{erho.pdf}
\vfill
\eject

\title{Asymptotics}
\vskip-10pt
\begin{itemize}
  \item {\bf Theorem} \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}: if $\hat v(k):=\int dx\ e^{ikx}v(x)\geqslant 0$, then
  $$
    \frac{e_0}\rho\mathop{\longrightarrow}_{\rho\to\infty}\frac12\int dx\ v(x)
  $$
  \item {\bf Theorem} \href{https://doi.org/10.1103/PhysRevLett.80.2504}{[Lieb, Yngvason, 1998]}: in 3 dimensions
  $$
    \frac{e_0}\rho\mathop{\longrightarrow}_{\rho\to0}2\pi a
  $$
  \item {\bf Theorem} \href{https://doi.org/10.1023/A:101033721}{[Lieb, Yngvason, 2001]}: in 2 dimensions
  $$
    \frac{e_0}\rho\mathop{\longrightarrow}_{\rho\to0}\frac{2\pi}{|\log(\rho a^2)|}
  $$
\end{itemize}
\vfill
\eject

\title{Lee-Huang-Yang formula}
\begin{itemize}
  \item In 3 dimensions, \href{https://doi.org/10.1103/PhysRev.106.1135}{[Lee, Huang, Yang, 1957]} conjecture:
  $$
    e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)
  $$
  \item This was recently proved by \href{https://arxiv.org/abs/1904.06164}{[Fournais, Solovej, 2019]}.
\end{itemize}
\vfill
\eject

\title{Results}
\begin{itemize}
  \item {\bf Theorem}: For Lieb's simplified equation,
  $$
    \frac{e_0}\rho\mathop{\longrightarrow}_{\rho\to\infty}\frac12\int dx\ v(x)
  $$
  and, in 3 dimensions,
  $$
    e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+O(\rho)\right)
  $$
  in 2 dimensions
  $$
    \frac{e_0}\rho\mathop{\longrightarrow}_{\rho\to\infty}\frac{2\pi}{|\log(\rho a)|}
    .
  $$
\end{itemize}

\end{document}