Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Jauslin_GLaMP_2019.tex')
-rw-r--r--Jauslin_GLaMP_2019.tex187
1 files changed, 187 insertions, 0 deletions
diff --git a/Jauslin_GLaMP_2019.tex b/Jauslin_GLaMP_2019.tex
new file mode 100644
index 0000000..2354d06
--- /dev/null
+++ b/Jauslin_GLaMP_2019.tex
@@ -0,0 +1,187 @@
+\documentclass{ian-presentation}
+
+\usepackage[hidelinks]{hyperref}
+\usepackage{graphicx}
+\usepackage{array}
+
+\begin{document}
+\pagestyle{empty}
+\hbox{}\vfil
+\bf\Large
+\hfil Lieb's simplified approach to interacting Bose gases\par
+\vfil
+\large
+\hfil Ian Jauslin
+\normalsize
+\vfil
+\hfil\rm joint with {\bf Eric Carlen}, {\bf Elliott H. Lieb}\par
+\vfil
+\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
+\eject
+
+\setcounter{page}1
+\pagestyle{plain}
+
+\title{Bose gas}
+\hfil\includegraphics[height=6cm]{BEC.png}
+\vfill
+\eject
+
+\title{Interacting Bose gas}
+\begin{itemize}
+ \item State: symmetric wave functions in a finite box of volume $V$ with periodic boundary conditions:
+ $$
+ \psi(x_1,\cdots,x_N)
+ ,\quad
+ x_i\in \Lambda_d:=V^{\frac1d}\mathbb T^d
+ $$
+ \item $N$-particle Hamiltonian:
+ $$
+ H_N:=
+ -\frac12\sum_{i=1}^N\Delta_i
+ +\sum_{1\leqslant i<j\leqslant N}v(|x_i-x_j|)
+ $$
+ with a repulsive, integrable interaction: $v(|x-y|)\geqslant 0$, $\int dx\ v(x)<\infty$.
+
+\end{itemize}
+\vfill
+\eject
+
+\title{Interacting Bose gas}
+\begin{itemize}
+ \item Ground state:
+ $$
+ H_N\psi_0=E_0\psi_0
+ ,\quad
+ E_0=\min\mathrm{spec}(H_N)
+ $$
+ \item Compute the ground state-energy per particle in the thermodynamic limit:
+ $$
+ e_0:=\lim_{\displaystyle\mathop{\scriptstyle V,N\to\infty}_{\frac NV=\rho}}\frac{E_0}N
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Energy}
+\begin{itemize}
+ \item Integrate $H_N\psi_0=E_0\psi_0$:
+ $$
+ \frac{E_0}N=\frac{N-1}{2V}\int dx\ v(|x-y|)g_2(x,y)
+ $$
+ \item $g_n$: marginal of $\psi_0$
+ $$
+ g_n(x_1,\cdots,x_n):=\frac{V^n\int dx_{n+1}\cdots dx_N\ \psi_0(x_1,\cdots,x_N)}{\int dx_1\cdots dx_N\ \psi_0(x_1,\cdots,x_N)}
+ $$
+ \item $\psi_0\geqslant 0$, so it can be thought of as a probability distribution
+\end{itemize}
+\vfill
+\eject
+
+\title{Hierarchy}
+\vskip-10pt
+\begin{itemize}
+ \item Equation for $g_2$: integrate $H_N\psi_0=E_0\psi_0$ with respect to $x_3,\cdots,x_N$:
+ $$
+ \begin{array}{>\displaystyle l}
+ -\frac12(\Delta_x+\Delta_y) g_2(x,y)
+ +\frac{N-2}V\int dz\ (v(|x-z|)+v(|y-z|))g_3(x,y,z)
+ \\[0.5cm]\hfill
+ +v(|x-y|)g_2(x,y)
+ +\frac{(N-2)(N-3)}{2V^2}\int dzdt\ v(|z-t|)g_4(x,y,z,t)
+ =E_0g_2(x,y)
+ \end{array}
+ $$
+ \item Factorization assumption:
+ $$
+ g_3(x_1,x_2,x_3)=g_2(x_1,x_2)g_2(x_1,x_3)g_2(x_2,x_3)
+ $$
+ $$
+ g_4(x_1,x_2,x_3,x_4)=\prod_{i<j}(g_2(x_i,x_j)+O(V^{-1}))
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Lieb's simple equation}
+\begin{itemize}
+ \item In the thermodynamic limit, after making a few additional assumptions, \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}:
+ $$
+ (-\Delta+v(|x|)+4e_0)u(|x|)=v(|x|)+2e_0\rho\ u\ast u(|x|)
+ $$
+ $$
+ e_0=\frac\rho2\int dx\ (1-u(|x|))v(|x|)
+ $$
+ \item with $\rho:=\frac NV$
+ $$
+ g_2(x,y)=1-u(|x-y|)
+ ,\quad
+ u\ast u(|x|):=\int dy\ u(|x-y|)u(|y|)
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{One dimension}
+\hfil\includegraphics[height=6cm,angle=0.4]{1d.png}
+\vfill
+\eject
+
+\title{Numerical solution for $v(x)=e^{-|x|}$ in 3 dimensions}
+\hfil\includegraphics[height=6cm]{erho_bare.pdf}
+\vfill
+\eject
+
+\title{Numerical solution for $v(x)=e^{-|x|}$ in 3 dimensions}
+\hfil\includegraphics[height=6cm]{erho.pdf}
+\vfill
+\eject
+
+\title{Asymptotics}
+\vskip-10pt
+\begin{itemize}
+ \item {\bf Theorem} \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}: if $\hat v(k):=\int dx\ e^{ikx}v(x)\geqslant 0$, then
+ $$
+ \frac{e_0}\rho\mathop{\longrightarrow}_{\rho\to\infty}\frac12\int dx\ v(x)
+ $$
+ \item {\bf Theorem} \href{https://doi.org/10.1103/PhysRevLett.80.2504}{[Lieb, Yngvason, 1998]}: in 3 dimensions
+ $$
+ \frac{e_0}\rho\mathop{\longrightarrow}_{\rho\to0}2\pi a
+ $$
+ \item {\bf Theorem} \href{https://doi.org/10.1023/A:101033721}{[Lieb, Yngvason, 2001]}: in 2 dimensions
+ $$
+ \frac{e_0}\rho\mathop{\longrightarrow}_{\rho\to0}\frac{2\pi}{|\log(\rho a^2)|}
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Lee-Huang-Yang formula}
+\begin{itemize}
+ \item In 3 dimensions, \href{https://doi.org/10.1103/PhysRev.106.1135}{[Lee, Huang, Yang, 1957]} conjecture:
+ $$
+ e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)
+ $$
+ \item This was recently proved by \href{https://arxiv.org/abs/1904.06164}{[Fournais, Solovej, 2019]}.
+\end{itemize}
+\vfill
+\eject
+
+\title{Results}
+\begin{itemize}
+ \item {\bf Theorem}: For Lieb's simplified equation,
+ $$
+ \frac{e_0}\rho\mathop{\longrightarrow}_{\rho\to\infty}\frac12\int dx\ v(x)
+ $$
+ and, in 3 dimensions,
+ $$
+ e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+O(\rho)\right)
+ $$
+ in 2 dimensions
+ $$
+ \frac{e_0}\rho\mathop{\longrightarrow}_{\rho\to\infty}\frac{2\pi}{|\log(\rho a)|}
+ .
+ $$
+\end{itemize}
+
+\end{document}