\documentclass{ian-presentation} \usepackage[hidelinks]{hyperref} \usepackage{graphicx} \usepackage{array} \begin{document} \pagestyle{empty} \hbox{}\vfil \bf\Large \hfil Lieb's simplified approach to interacting Bose gases\par \vfil \large \hfil Ian Jauslin \normalsize \vfil \hfil\rm joint with {\bf Eric Carlen}, {\bf Elliott H. Lieb}\par \vfil \hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} \eject \setcounter{page}1 \pagestyle{plain} \title{Bose gas} \hfil\includegraphics[height=6cm]{BEC.png} \vfill \eject \title{Interacting Bose gas} \begin{itemize} \item State: symmetric wave functions in a finite box of volume $V$ with periodic boundary conditions: $$ \psi(x_1,\cdots,x_N) ,\quad x_i\in \Lambda_d:=V^{\frac1d}\mathbb T^d $$ \item $N$-particle Hamiltonian: $$ H_N:= -\frac12\sum_{i=1}^N\Delta_i +\sum_{1\leqslant i\displaystyle l} -\frac12(\Delta_x+\Delta_y) g_2(x,y) +\frac{N-2}V\int dz\ (v(|x-z|)+v(|y-z|))g_3(x,y,z) \\[0.5cm]\hfill +v(|x-y|)g_2(x,y) +\frac{(N-2)(N-3)}{2V^2}\int dzdt\ v(|z-t|)g_4(x,y,z,t) =E_0g_2(x,y) \end{array} $$ \item Factorization assumption: $$ g_3(x_1,x_2,x_3)=g_2(x_1,x_2)g_2(x_1,x_3)g_2(x_2,x_3) $$ $$ g_4(x_1,x_2,x_3,x_4)=\prod_{i