Ian Jauslin
summaryrefslogtreecommitdiff
blob: 508a8b77f36e78ff16b37631df81c74e763e0ea6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
\documentclass{ian-presentation}

\usepackage[hidelinks]{hyperref}
\usepackage{graphicx}
\usepackage{array}
\usepackage{xcolor}


\definecolor{ipurple}{HTML}{4B0082}
\definecolor{iyellow}{HTML}{DAA520}
\definecolor{igreen}{HTML}{32CD32}
\definecolor{iblue}{HTML}{4169E1}
\definecolor{ired}{HTML}{DC143C}

\definecolor{highlight}{HTML}{981414}

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf\Large
\hfil Interacting Bosons at intermediate densities\par
\vfil
\large
\hfil Ian Jauslin
\normalsize
\vfil
\hfil\rm joint with {\bf Eric A. Carlen}, {\bf Elliott H. Lieb}\par
\vfil
arXiv:{\tt\ \parbox[b]{6cm}{
  \href{https://arxiv.org/abs/1912.04987}{1912.04987}\ 
  \href{https://arxiv.org/abs/2010.13882}{2010.13882}\par
  \href{https://arxiv.org/abs/2011.10869}{2011.10869}\ 
  \href{https://arxiv.org/abs/2202.07637}{2202.07637}\par
  \href{https://arxiv.org/abs/2302.13446}{2302.13446}\ 
  \href{https://arxiv.org/abs/2302.13449}{2302.13449}
}}
\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
\eject

\setcounter{page}1
\pagestyle{plain}

\title{Bosons}
\begin{itemize}
\item Quantum particles are either {\color{highlight}Fermions} or {\color{highlight}Bosons} (in 3D).

\item Fermions: electrons, protons, neutrinos, etc...

\item Bosons: photons, Helium atoms, Higgs particle, etc...

\item At low temperatures: inherently {\color{highlight}quantum} behavior: e.g. {\color{highlight}Bose-Einstein condensation}, superfluidity, quantized vortices, etc...

\item Difficult to handle mathematically: usual approach {\color{highlight}effective theories}.

\item The connection between the original model and the effective theory is, in most cases, poorly understood.
\end{itemize}
\vfill
\eject

\title{Repulsive Bose gas}
\begin{itemize}
  \item Potential: {\color{highlight}$v(r)\geqslant 0$}, {\color{highlight}$\hat v\geqslant 0$} and {\color{highlight}$v\in L_1(\mathbb R^3)$}, on a torus of volume $V$:
  $$
    H_N:=
    -\frac12\sum_{i=1}^N\Delta_i
    +\sum_{1\leqslant i<j\leqslant N}v(|x_i-x_j|)
  $$
  \vskip-5pt
  \item Ground state ({\color{highlight}zero temperature}): $\psi_0$, energy $E_0$.

  \item Observables in the {\color{highlight}thermodynamic limit}: for instance, ground state energy per particle
  $$
    e_0:=\lim_{\displaystyle\mathop{\scriptstyle V,N\to\infty}_{{\color{highlight}\frac NV=\rho}}}\frac{E_0}N
    .
  $$

  \item Main difficulty: dealing with the interactions.
\end{itemize}
\vfill
\eject

\title{Known results}
\begin{itemize}
  \item {\color{highlight}Low density}: \href{https://doi.org/10.1103/PhysRev.106.1135}{Lee-Huang-Yang} formula
  $$
    e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt{\rho a^3})\right)
  $$
  proved:
  \href{https://doi.org/10.1103/PhysRevLett.80.2504}{[Lieb, Yngvason, 1998]},
  \href{https://doi.org/10.1007/s10955-009-9792-3}{[Yau, Yin, 2009]},
  \href{https://doi.org/10.4007/annals.2020.192.3.5}{[Fournais, Solovej, 2020]},
  \href{https://doi.org/10.1017/fms.2021.66}{[Basti, Cenatiempo, Schlein, 2021]}.
  
  \item {\color{highlight}High density}: Hartree energy:
  $$
    e_0\sim\frac\rho2\int v
  $$
  proved: \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}.
\end{itemize}
\vfill
\eject

\title{The Simplified approach: proof of concept}
For $v(x)=e^{-|x|}$: {\color{ipurple}Simplified approach}, {\color{iyellow}LHY}, {\color{igreen}Hartree}, {\color{ired}Monte Carlo}

\hfil\includegraphics[height=5.5cm]{energy.pdf}
\vfill
\eject

\title{The Simplified approach}
\begin{itemize}
  \item \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]},
  \href{https://arxiv.org/abs/2302.13446}{[Jauslin, 2023]}.

  \item Integrate $H_N\psi_0=E_0\psi_0$:
  $$
    \int dx_1\cdots dx_N\ 
    \left(
      -\frac12\sum_{i=1}^N\Delta_i\psi_0
      +\sum_{1\leqslant i<j\leqslant N} v(|x_i-x_j|)\psi_0
    \right)
    =E_0\int dx_1\cdots dx_N\ \psi_0
  $$
  \item Therefore,
  $$
    \frac{N(N-1)}2\int dx_1dx_2\ v(x_1-x_2)\frac{\int dx_3\cdots dx_N\ \psi_0}{\int dy_1\cdots dy_N\ \psi_0}
    =E_0
  $$
\end{itemize}
\vfill
\eject

\title{The Simplified approach}
\begin{itemize}
  \item {\color{highlight}$\psi_0\geqslant 0$}, so it can be thought of as a probability distribution.
  \item $g_n$: {\color{highlight}correlation functions} of $V^{-N}\psi_0$
  $$
    g_n(x_1,\cdots,x_n):=\frac{V^n\int dx_{n+1}\cdots dx_N\ \psi_0(x_1,\cdots,x_N)}{\int dy_1\cdots dy_N\ \psi_0(y_1,\cdots,y_N)}
  $$
  \item Thus,
  $$
    \frac{E_0}N=\frac{N-1}{2V}\int dx\ v(x)g_2(0,x)
  $$
\end{itemize}
\vfill
\eject

\title{Hierarchy}
\vskip-10pt
\begin{itemize}
  \item Equation for $g_2$: integrate $H_N\psi_0=E_0\psi_0$ with respect to $x_3,\cdots,x_N$:
  $$
    \begin{array}{>\displaystyle l}
      -\frac12(\Delta_x+\Delta_y) g_2(x,y)
      +\frac{N-2}V\int dz\ (v(x-z)+v(y-z))g_3(x,y,z)
      \\[0.5cm]\hfill
      +v(x-y)g_2(x,y)
      +\frac{(N-2)(N-3)}{2V^2}\int dzdt\ v(z-t)g_4(x,y,z,t)
      =E_0g_2(x,y)
    \end{array}
  $$

  \item {\color{highlight}Infinite hierarchy} of equations.
\end{itemize}
\vfill
\eject

\title{Factorization assumption}
\begin{itemize}
  \item Factorization {\color{highlight}assumption} (clustering property): for $n=3,4$,
  $$
    g_n(x_1,\cdots,x_n)=\prod_{1\leqslant i<j\leqslant n}(1-u_n(x_i-x_j))
    ,\quad
    u_n\in L_1(\mathbb R^3)
  $$

  \item Consistency condition:
  $$
    \int \frac{dx_3}V\ g_3(x_1,x_2,x_3)=g_2(x_1,x_2)
    ,\quad
    \int \frac{dx_3}V\frac{dx_4}V\ g_4(x_1,x_2,x_3,x_4)=g_2(x_1,x_2)
  $$

  \item Remark: in general,
  $$
    \int \frac{dx_4}V\ g_4(x_1,x_2,x_3,x_4)\neq g_3(x_1,x_2,x_3)
  $$
\end{itemize}
\vfill
\eject

\title{Factorization assumption}
\begin{itemize}
  \item {\bf Lemma} 
  \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]},
  \href{https://arxiv.org/abs/2302.13446}{[Jauslin, 2023]}:
  Under the Factorization assumption and the consistency condition,
  $$
    u_3(x-y)=u(x-y)+\frac1V(1-u(x-y))\int dz\ u(x-z)u(z-y)+O(V^{-2})
  $$
  $$
    u_4(x-y)=u(x-y)+\frac2V(1-u(x-y))\int dz\ u(x-z)u(z-y)+O(V^{-2})
  $$

  \item With $u(x):=1-g_2(0,x)$.
\end{itemize}
\vfill
\eject

\title{{\color{ipurple}Big equation}}
\begin{itemize}
\item In the thermodynamic limit,
  $$
    -\Delta u(x)
    =
    (1-u(x))\left(v(x)-2\rho K(x)+\rho^2 L(x)\right)
  $$
  $$
    K:=
    u\ast S
    ,\quad
    S(y):=(1-u(y))v(y)
  $$
  $$
    L:=
    u\ast u\ast S
    -2u\ast(u(u\ast S))
    +\frac12
    \int dydz\ u(y)u(z-x)u(z)u(y-x)S(z-y)
    .
  $$

  \item {\color{ipurple}``Big'' equation}:
  $$
    L\approx
    u\ast u\ast S
    -2u\ast (u(u\ast S))
  $$
\end{itemize}
\vfill
\eject
  
\title{{\color{iblue}Simple equation}}
\vskip-10pt
\begin{itemize}
  \item Further approximate $S(x)\approx\frac{2e}\rho\delta(x)$ and $u\ll 1$.
  \item {\color{iblue}Simple equation}:
  $$
    -\Delta u(x)=(1-u(x))v(x)- 4eu(x)+2e\rho\ u\ast u(x)
  $$
  $$
    e=\frac\rho2\int dx\ (1-u(x))v(x)
  $$
  \item {\bf Theorem 1}:
  If $v(x)\geqslant 0$ and $v\in L_1\cap L_2(\mathbb R^3)$, then the {\color{iblue}simple equation} has an {\color{highlight}integrable solution} (proved constructively), with $0\leqslant u\leqslant 1$.
\end{itemize}
\vfill
\eject

\title{Energy for the {\color{iblue}simple equation}}
\vskip-10pt
\begin{itemize}
  \item {\bf Theorem 2}:
  $$
    \frac{e}{\rho}\mathop{\longrightarrow}_{\rho\to\infty}\frac12\int dx\ v(x)
    .
  $$
  This coincides with the {\color{highlight}Hartree energy}.
  \item {\bf Theorem 3}:
  $$
    e=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)
  $$
  This coincides with the {\color{highlight}Lee-Huang-Yang prediction}.
\end{itemize}
\vfill
\eject

\title{Energy}
$v(x)=e^{-|x|}$, {\color{ipurple}Big equation}, {\color{ired}Monte Carlo}

\hfil\includegraphics[height=5.5cm]{energy.pdf}
\vfill
\eject

\title{Radial distribution function}
\begin{itemize}
  \item
  {\color{highlight}Two-point correlation}:
  $$
    C_2(y-z)=\sum_{i,j}\left<\psi_0\right|\delta(y-x_i)\delta(z-x_j)\left|\psi_0\right>
    .
  $$
  \item
  {\color{highlight}Radial distribution}: spherical average and normalization:
  $$
    G(r):=\frac1{\rho^2}\int\frac{dy}{4\pi r^2}\ \delta(|y|-r)C_2(y)
    .
  $$

  \item
  Compute $C_2$ using
  $$
    C_2(x)=2\rho\frac{\delta e_0}{\delta v(x)}
    .
  $$
\end{itemize}
\vfill
\eject

\title{Radial distribution function}
$v(x)=16e^{-|x|}$, $\rho=0.02$ {\color{ipurple}Big equation}, {\color{ired}Monte Carlo}

\hfil\includegraphics[height=5.5cm]{2pt.pdf}
\vfill
\eject

\title{Radial distribution function}
$v(x)=8e^{-|x|}$, $\rho=10^{-5}$-$10^{-1}$

\hfil\includegraphics[height=5.5cm]{2pt_rho.pdf}
\vfill
\eject

\title{Radial distribution function}
$v(x)=8e^{-|x|}$, maximal value as a function of $\rho$:

\hfil\includegraphics[height=5.5cm]{2pt_max.pdf}
\vfill
\eject

\title{Liquid behavior}
\begin{itemize}
  \item Maximum above $1$: there is a length scale at which it is {\color{highlight} more probable} to find pairs of particles.
  \item {\color{highlight}No} long range order.
  \item {\color{highlight}Short-range order}: {\color{highlight}Liquid}-like behavior.
\end{itemize}
\vfill
\eject

\title{Structure factor}
\begin{itemize}
  \item
  {\color{highlight}Structure factor}: Fourier transform of $G$:
  $$
    S(|k|):=1+\rho\int dx\ e^{ikx}(G(|x|)-1)
    .
  $$

  \item
  Directly observable in X-ray scattering experiments.

  \item
  Sharp peaks: order.

  \item
  Large deviation from $1$: uniformity.
\end{itemize}
\vfill
\eject

\title{Structure factor}
$v(x)=8e^{-|x|}$, $\rho=10^{-5}$-$0.3$

\hfil\includegraphics[height=5.5cm]{2pt_fourier_full.pdf}
\vfill
\eject

\title{Structure factor}
$v(x)=8e^{-|x|}$, $\rho=10^{-5}$-$0.3$

\hfil\includegraphics[height=5.5cm]{2pt_fourier_peak.pdf}
\vfill
\eject

\title{Structure factor}
$v(x)=8e^{-|x|}$, maximal value as a function of $\rho$:

\hfil\includegraphics[height=5.5cm]{2pt_fourier_max.pdf}
\vfill
\eject

\title{Liquid behavior}
\begin{itemize}
  \item Sharpening of the peak: more order.
  \item Not Bragg peaks: {\color{highlight}No} long range order.
  \item Larger deviation from 1: more uniform (not even close to hyperuniform).
  \item {\color{highlight}Short-range order}: {\color{highlight}Liquid}-like behavior.
\end{itemize}
\vfill
\eject

\title{Critical densities}
\begin{itemize}
  \item
  We have found two critical densities: $\rho_*\approx 0.9\times10^{-3}$ and $\rho_{**}\approx0.2$.

  \item The radial distribution function has a maximum only for $\rho>\rho_*$.

  \item The structure factor has a maximum only for $\rho<\rho_{**}$.
\end{itemize}
\vfill
\eject

\title{Condensate fraction}
\begin{itemize}
  \item
  Proportion of particles in the condensate state:
  $$
    \eta:=\frac1N\sum_i\left<\psi_0\right|P_i\left|\psi_0\right>
  $$
  where $P_i$ is the projector onto the constant state $V^{-\frac12}$.

  \item
  $\eta>0$ in thermodynamic limit: {\color{highlight}Bose-Einstein condensation} (still not proved to occur).
\end{itemize}
\vfill
\eject

\title{Condensate fraction}
$v(x)=8e^{-|x|}$:

\hfil\includegraphics[height=5.5cm]{condensate.pdf}
\vfill
\eject

\title{Summary and outlook}
\begin{itemize}
  \item Using the {\color{highlight}Simplified approach}, we were able to probe the repulsive Bose gas {\color{highlight}beyond the dilute regime}.

  \item Evidence for {\color{highlight}non-trivial behavior} at intermediate densities $\rho_*<\rho<\rho_{**}$: {\color{highlight}short-range order}.

  \item Is there a phase transition?

  \item The intermediate density regime has not been studied much, due to the lack of tools to do so.
  As we have seen, there is non-trivial behavior there.
  This warrants further investigation, both theoretical and experimental.
\end{itemize}
\vfill
\eject

\title{Open problems on the Simplified approach}
\begin{itemize}
  \item
  Connect the Simplified approach to the many-Boson system: numerics suggests the prediction of the Simplified approach is an {\color{highlight}upper bound}, for all densities.

  \item
  Understand the factorization assumption.
  It certainly does not hold exactly.
  Does it hold approximately, in some sense?

  \item
  There are still many questions about the Bose gas with hard core interactions.
  The Simplified approach is easily defined in the hard core case.
  Can it shed some light?
\end{itemize}

\end{document}