\documentclass{ian-presentation} \usepackage[hidelinks]{hyperref} \usepackage{graphicx} \usepackage{array} \usepackage{xcolor} \definecolor{ipurple}{HTML}{4B0082} \definecolor{iyellow}{HTML}{DAA520} \definecolor{igreen}{HTML}{32CD32} \definecolor{iblue}{HTML}{4169E1} \definecolor{ired}{HTML}{DC143C} \definecolor{highlight}{HTML}{981414} \begin{document} \pagestyle{empty} \hbox{}\vfil \bf\Large \hfil Interacting Bosons at intermediate densities\par \vfil \large \hfil Ian Jauslin \normalsize \vfil \hfil\rm joint with {\bf Eric A. Carlen}, {\bf Elliott H. Lieb}\par \vfil arXiv:{\tt\ \parbox[b]{6cm}{ \href{https://arxiv.org/abs/1912.04987}{1912.04987}\ \href{https://arxiv.org/abs/2010.13882}{2010.13882}\par \href{https://arxiv.org/abs/2011.10869}{2011.10869}\ \href{https://arxiv.org/abs/2202.07637}{2202.07637}\par \href{https://arxiv.org/abs/2302.13446}{2302.13446}\ \href{https://arxiv.org/abs/2302.13449}{2302.13449} }} \hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} \eject \setcounter{page}1 \pagestyle{plain} \title{Bosons} \begin{itemize} \item Quantum particles are either {\color{highlight}Fermions} or {\color{highlight}Bosons} (in 3D). \item Fermions: electrons, protons, neutrinos, etc... \item Bosons: photons, Helium atoms, Higgs particle, etc... \item At low temperatures: inherently {\color{highlight}quantum} behavior: e.g. {\color{highlight}Bose-Einstein condensation}, superfluidity, quantized vortices, etc... \item Difficult to handle mathematically: usual approach {\color{highlight}effective theories}. \item The connection between the original model and the effective theory is, in most cases, poorly understood. \end{itemize} \vfill \eject \title{Repulsive Bose gas} \begin{itemize} \item Potential: {\color{highlight}$v(r)\geqslant 0$}, {\color{highlight}$\hat v\geqslant 0$} and {\color{highlight}$v\in L_1(\mathbb R^3)$}, on a torus of volume $V$: $$ H_N:= -\frac12\sum_{i=1}^N\Delta_i +\sum_{1\leqslant i\displaystyle l} -\frac12(\Delta_x+\Delta_y) g_2(x,y) +\frac{N-2}V\int dz\ (v(x-z)+v(y-z))g_3(x,y,z) \\[0.5cm]\hfill +v(x-y)g_2(x,y) +\frac{(N-2)(N-3)}{2V^2}\int dzdt\ v(z-t)g_4(x,y,z,t) =E_0g_2(x,y) \end{array} $$ \item {\color{highlight}Infinite hierarchy} of equations. \end{itemize} \vfill \eject \title{Factorization assumption} \begin{itemize} \item Factorization {\color{highlight}assumption} (clustering property): for $n=3,4$, $$ g_n(x_1,\cdots,x_n)=\prod_{1\leqslant i . $$ \item {\color{highlight}Radial distribution}: spherical average and normalization: $$ G(r):=\frac1{\rho^2}\int\frac{dy}{4\pi r^2}\ \delta(|y|-r)C_2(y) . $$ \item Compute $C_2$ using $$ C_2(x)=2\rho\frac{\delta e_0}{\delta v(x)} . $$ \end{itemize} \vfill \eject \title{Radial distribution function} $v(x)=16e^{-|x|}$, $\rho=0.02$ {\color{ipurple}Big equation}, {\color{ired}Monte Carlo} \hfil\includegraphics[height=5.5cm]{2pt.pdf} \vfill \eject \title{Radial distribution function} $v(x)=8e^{-|x|}$, $\rho=10^{-5}$-$10^{-1}$ \hfil\includegraphics[height=5.5cm]{2pt_rho.pdf} \vfill \eject \title{Radial distribution function} $v(x)=8e^{-|x|}$, maximal value as a function of $\rho$: \hfil\includegraphics[height=5.5cm]{2pt_max.pdf} \vfill \eject \title{Liquid behavior} \begin{itemize} \item Maximum above $1$: there is a length scale at which it is {\color{highlight} more probable} to find pairs of particles. \item {\color{highlight}No} long range order. \item {\color{highlight}Short-range order}: {\color{highlight}Liquid}-like behavior. \end{itemize} \vfill \eject \title{Structure factor} \begin{itemize} \item {\color{highlight}Structure factor}: Fourier transform of $G$: $$ S(|k|):=1+\rho\int dx\ e^{ikx}(G(|x|)-1) . $$ \item Directly observable in X-ray scattering experiments. \item Sharp peaks: order. \item Large deviation from $1$: uniformity. \end{itemize} \vfill \eject \title{Structure factor} $v(x)=8e^{-|x|}$, $\rho=10^{-5}$-$0.3$ \hfil\includegraphics[height=5.5cm]{2pt_fourier_full.pdf} \vfill \eject \title{Structure factor} $v(x)=8e^{-|x|}$, $\rho=10^{-5}$-$0.3$ \hfil\includegraphics[height=5.5cm]{2pt_fourier_peak.pdf} \vfill \eject \title{Structure factor} $v(x)=8e^{-|x|}$, maximal value as a function of $\rho$: \hfil\includegraphics[height=5.5cm]{2pt_fourier_max.pdf} \vfill \eject \title{Liquid behavior} \begin{itemize} \item Sharpening of the peak: more order. \item Not Bragg peaks: {\color{highlight}No} long range order. \item Larger deviation from 1: more uniform (not even close to hyperuniform). \item {\color{highlight}Short-range order}: {\color{highlight}Liquid}-like behavior. \end{itemize} \vfill \eject \title{Critical densities} \begin{itemize} \item We have found two critical densities: $\rho_*\approx 0.9\times10^{-3}$ and $\rho_{**}\approx0.2$. \item The radial distribution function has a maximum only for $\rho>\rho_*$. \item The structure factor has a maximum only for $\rho<\rho_{**}$. \end{itemize} \vfill \eject \title{Condensate fraction} \begin{itemize} \item Proportion of particles in the condensate state: $$ \eta:=\frac1N\sum_i\left<\psi_0\right|P_i\left|\psi_0\right> $$ where $P_i$ is the projector onto the constant state $V^{-\frac12}$. \item $\eta>0$ in thermodynamic limit: {\color{highlight}Bose-Einstein condensation} (still not proved to occur). \end{itemize} \vfill \eject \title{Condensate fraction} $v(x)=8e^{-|x|}$: \hfil\includegraphics[height=5.5cm]{condensate.pdf} \vfill \eject \title{Summary and outlook} \begin{itemize} \item Using the {\color{highlight}Simplified approach}, we were able to probe the repulsive Bose gas {\color{highlight}beyond the dilute regime}. \item Evidence for {\color{highlight}non-trivial behavior} at intermediate densities $\rho_*<\rho<\rho_{**}$: {\color{highlight}short-range order}. \item Is there a phase transition? \item The intermediate density regime has not been studied much, due to the lack of tools to do so. As we have seen, there is non-trivial behavior there. This warrants further investigation, both theoretical and experimental. \end{itemize} \vfill \eject \title{Open problems on the Simplified approach} \begin{itemize} \item Connect the Simplified approach to the many-Boson system: numerics suggests the prediction of the Simplified approach is an {\color{highlight}upper bound}, for all densities. \item Understand the factorization assumption. It certainly does not hold exactly. Does it hold approximately, in some sense? \item There are still many questions about the Bose gas with hard core interactions. The Simplified approach is easily defined in the hard core case. Can it shed some light? \end{itemize} \end{document}