Ian Jauslin
summaryrefslogtreecommitdiff
blob: fb89d6a8446afc5761914d9e991aa950ece397bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
\documentclass{ian-presentation}

\usepackage[hidelinks]{hyperref}
\usepackage{graphicx}
\usepackage{xcolor}

\definecolor{highlight}{HTML}{981414}
\def\high#1{{\color{highlight}#1}}

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf\Large
\hfil Statistical Mechanics\par
\smallskip
\hfil from microscopic to macroscopic\par
\vfil
\large
\hfil Ian Jauslin\par
\rm\normalsize
\smallskip
\hfil{\tiny Hill 602, 534}
\vfil
{\tt \href{mailto:ian.jauslin@rutgers.edu}{ian.jauslin@rutgers.edu}}
\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
\eject

\setcounter{page}1
\pagestyle{plain}

\title{Statistical mechanics at Rutgers (math)}
\begin{itemize}
  \item Eric Carlen
  \item Shelly Goldstein
  \item Ian Jauslin
  \item Michael Kiessling
  \item Joel Lebowitz
\end{itemize}

\vfill
\eject

\title{What is Statistical Mechanics?}
\begin{itemize}
  \item Phenomena that are \high{directly observable} are \high{Macroscopic}: for example
  \begin{itemize}
    \item Ideal gas law:
      $$pV=Nk_BT$$
    \item Freezing and other phase transitions.
    \item Ohm's law:
      $$V=RI$$
  \end{itemize}
  \vskip-5pt

  \item How to understand these? \high{Microscopic} theories!
\end{itemize}
\vfill
\eject

\addtocounter{page}{-1}
\title{What is Statistical Mechanics?}
\begin{itemize}
  \item Phenomena that are \high{directly observable} are \high{Macroscopic}: for example
  \begin{itemize}
    \item Ideal gas law: \high{free molecules}
      $$pV=Nk_BT$$
    \item Freezing and other phase transitions: \high{ordering of particles}.
    \item Ohm's law: \high{electrons moving through a metal}
      $$V=RI$$
  \end{itemize}
  \vskip-5pt

  \item How to understand these? \high{Microscopic} theories!
\end{itemize}
\vfill
\eject

\title{What is Statistical Mechanics?}
\vfill
\begin{itemize}
  \item Statistical mechanics: understanding how the \high{macroscopic} properties follow from the \high{microscopic} laws of nature (``first principles'').
\end{itemize}
\vfill
\eject

\title{The arrow of time}
\begin{itemize}
  \item The microscopic dynamics are \high{reversible}.
  \begin{itemize}
    \item Consider the motion of a point particle, which follows the laws of Newtonian mechanics.
    \item If time is \high{reversed}, the motion still satisfies the \high{same} laws of Newtonian mechanics.
  \end{itemize}

  \item Many macroscopic phenomena are \high{irreversible}.
  \begin{itemize}
    \item For example: friction: the law of friction is not invariant under time reversal.
    \item Or, consider the expansion of a gas in a container.
  \end{itemize}
\end{itemize}
\vfill
\eject

\title{The thermodynamic limit}
\begin{itemize}
  \item One mole $\approx\ 6.02\times10^{23}$.

  \item Whereas a \high{finite} number of microscopic particles behaves reversibly, an \high{infinite} number of microscopic particles does not.

  \item Fundamental tool of statistical mechanics: the \high{thermodynamic limit}, in which the number of particles $\to\infty$.

\end{itemize}
\vfill
\eject

\title{Putting the Statistics in Statistical Mechanics}
\begin{itemize}
  \item To understand these infinite particles interacting with each other, we use \high{probability theory}.

  \item Simple example: the free gas:
  \begin{itemize}
    \item Each particle is a point, and no two particles interact with each other.
    \item Probability distribution: \high{Gibbs distribution}
    $$
      p(\mathbf x,\mathbf v)=\frac1Z e^{-\beta H(\mathbf x,\mathbf v)}
      ,\quad
      \beta:=\frac1{k_BT}
    $$
    where $H(\mathbf x,\mathbf v)$ is the energy of the configuration where the particles are located at $\mathbf x\equiv(x_1,\cdots,x_N)$ with velocities $\mathbf v\equiv(v_1,\cdots,v_N)$.
  \end{itemize}
\end{itemize}
\vfill
\eject

\title{The free gas}
\begin{itemize}
  \item The energy is the kinetic energy:
  $$
    H(\mathbf x,\mathbf v)=
    \frac12m\sum_{i=1}^Nv_i^2
    .
  $$
  \vskip-5pt

  \item Denoting the number of particles by $N$ and the volume by $V$, we have
  $$
    Z=V^N\left(\frac{2\pi}{\beta m}\right)^{\frac32N}
    .
  $$
  \vskip-5pt

  \item The pressure can be computed to be
  $$
    p
    =\frac N{\beta V}
    \equiv\frac{Nk_BT}V
  $$
  that is, the ideal gas law.
\end{itemize}
\vfill
\eject

\title{Hard sphere model}
\begin{itemize}
  \item Let us now consider a system where the microscopic particles \high{interact}: the \high{hard sphere model}, in which each particle is a sphere of radius $R$, and the interaction is such that no two spheres can overlap.

  \item Probability distribution:
  $$
    p(\mathbf x)=\frac1Ze^{\beta\mu N}
  $$
  where $\mu$ is the \high{chemical potential} and $\beta=\frac1{k_BT}$.
\end{itemize}
\vfill
\eject

\title{Hard sphere model}
\vskip-10pt
\begin{itemize}
  \item We expect, from numerical simulations, to see two phases: a \high{gaseous} phase and a \high{crystalline} one.
\end{itemize}

\hfil
\includegraphics[width=3cm]{gas.png}
\hfil
\includegraphics[width=3cm]{crystal.png}
\vskip-10pt

\begin{itemize}
  \item In the \high{gaseous phase}, the particles are almost decorrelated: they behave as if they did not interact.

  \item In the \high{crystalline phase}, they form large scale periodic structures: they behave very differently from the non-interacting gas.
\end{itemize}

\vfill
\eject

\title{Hard sphere model}
\begin{itemize}
  \item The \high{gaseous phase} is very well understood. Much about it can be computed using analytic expansions (called ``cluster expansions'' or ``Mayer expansions'').

  \item The \high{crystalline phase} is much more of a mystery: we still lack a proof that it exists at positive temperatures!

  \item \high{Open Problem}: prove that hard spheres crystallize at sufficiently low temperatures.
\end{itemize}
\vfill
\eject

\title{Liquid crystals}
\begin{itemize}
  \item Phase of matter that shares properties of \high{liquids} (disorder) and \high{crystals} (order).

  \item Nematic liquid crystals: order in orientation, disorder in position.
\end{itemize}
\hfil\includegraphics[width=4cm]{nematic.png}
\vfill
\eject

\title{Liquid crystals}
\begin{itemize}
  \item Model: hard cylinders.

  \item Expected phases: \high{gas}, \high{nematic}, \high{smectic}
\end{itemize}
\hfil\includegraphics[height=4cm]{gas-rods.png}
\hfil\includegraphics[height=4cm]{nematic.png}
\hfil\includegraphics[height=4cm]{smectic.png}
\vfill
\eject

\title{Liquid crystals}
\begin{itemize}
  \item Here again, the gas phase is well understood, but neither the nematic nor the smectic have yet been proved to exist.

  \item \high{Open Problem}: Prove the existence of a nematic or smectic phase.
\end{itemize}
\vfill
\eject

\title{Continuous symmetry breaking}
\begin{itemize}
  \item Difficulty for both the hard spheres and liquid crystals: \high{breaking a continuous symmetry} (translation for the hard spheres, rotation for the liquid crystals).

  \item Continuous symmetries cannot\textsuperscript{$\ast$} be broken in one or two dimensions.

  \item Continuous symmetry breaking can, so far, only be proved in very special models.
\end{itemize}
\vfill
\eject

\title{Lattice models}
\begin{itemize}
  \item Many examples:
\end{itemize}
\vfill
\hfil\includegraphics[width=1.2cm]{diamond.pdf}
\hfil\includegraphics[width=1.2cm]{cross.pdf}
\hfil\includegraphics[width=1.2cm]{hexagon.pdf}
\par
\vfill
\hfil\includegraphics[width=0.9cm]{V_triomino.pdf}
\hfil\includegraphics[width=0.9cm]{T_tetromino.pdf}
\hfil\includegraphics[width=0.9cm]{L_tetromino.pdf}
\hfil\includegraphics[width=0.9cm]{P_pentomino.pdf}
\vfill
\eject

\title{Hard diamond model}
\hfil\includegraphics[height=6cm]{diamonds.pdf}
\vfill
\eject

\addtocounter{page}{-1}
\title{Hard diamond model}
\hfil\includegraphics[height=6cm]{diamonds_color.pdf}
\vfill
\eject

\title{Hard diamond model}
\vfill
\begin{itemize}
  \item Idea: treat the vacancies as a gas of ``virtual particles''.

  \item Can prove crystallization for a large class of lattice models.
\end{itemize}
\vfill
\eject

\title{Hard rods on a lattice}
\begin{itemize}
  \item Model: rods of length $k$ on $\mathbb Z^2$.
\end{itemize}
\hfil\includegraphics[height=5cm]{rods.pdf}
\vfill
\eject

\title{Hard rods on a lattice}
\begin{itemize}
  \item Can prove that, when $k^{-2}\ll\rho\ll k^{-1}$, the system forms a nematic phase.

  \item For larger densities, one expects yet another phase, in which there are tiles of horizontal and vertical rods.

  \item \high{Open Problem}: generalization to 3 dimensions.
\end{itemize}
\vfill
\eject

\title{Conclusion}
\begin{itemize}
  \item Statistical Mechanics establishes a \high{link} between \high{Microscopic} theories and \high{Macroscopic} behavior.

  \item (In equilibrium) it consists in studying the properties of special probability distributions called \high{Gibbs Measures}.

  \item Even simple models pose significant mathematical challenges.

  \item Still, much can be said about \high{lattice models}, even though there are many problems that are \high{still open}!
\end{itemize}

\end{document}