Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Jauslin_Glimpse_2022.tex')
-rw-r--r--Jauslin_Glimpse_2022.tex317
1 files changed, 317 insertions, 0 deletions
diff --git a/Jauslin_Glimpse_2022.tex b/Jauslin_Glimpse_2022.tex
new file mode 100644
index 0000000..fb89d6a
--- /dev/null
+++ b/Jauslin_Glimpse_2022.tex
@@ -0,0 +1,317 @@
+\documentclass{ian-presentation}
+
+\usepackage[hidelinks]{hyperref}
+\usepackage{graphicx}
+\usepackage{xcolor}
+
+\definecolor{highlight}{HTML}{981414}
+\def\high#1{{\color{highlight}#1}}
+
+\begin{document}
+\pagestyle{empty}
+\hbox{}\vfil
+\bf\Large
+\hfil Statistical Mechanics\par
+\smallskip
+\hfil from microscopic to macroscopic\par
+\vfil
+\large
+\hfil Ian Jauslin\par
+\rm\normalsize
+\smallskip
+\hfil{\tiny Hill 602, 534}
+\vfil
+{\tt \href{mailto:ian.jauslin@rutgers.edu}{ian.jauslin@rutgers.edu}}
+\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
+\eject
+
+\setcounter{page}1
+\pagestyle{plain}
+
+\title{Statistical mechanics at Rutgers (math)}
+\begin{itemize}
+ \item Eric Carlen
+ \item Shelly Goldstein
+ \item Ian Jauslin
+ \item Michael Kiessling
+ \item Joel Lebowitz
+\end{itemize}
+
+\vfill
+\eject
+
+\title{What is Statistical Mechanics?}
+\begin{itemize}
+ \item Phenomena that are \high{directly observable} are \high{Macroscopic}: for example
+ \begin{itemize}
+ \item Ideal gas law:
+ $$pV=Nk_BT$$
+ \item Freezing and other phase transitions.
+ \item Ohm's law:
+ $$V=RI$$
+ \end{itemize}
+ \vskip-5pt
+
+ \item How to understand these? \high{Microscopic} theories!
+\end{itemize}
+\vfill
+\eject
+
+\addtocounter{page}{-1}
+\title{What is Statistical Mechanics?}
+\begin{itemize}
+ \item Phenomena that are \high{directly observable} are \high{Macroscopic}: for example
+ \begin{itemize}
+ \item Ideal gas law: \high{free molecules}
+ $$pV=Nk_BT$$
+ \item Freezing and other phase transitions: \high{ordering of particles}.
+ \item Ohm's law: \high{electrons moving through a metal}
+ $$V=RI$$
+ \end{itemize}
+ \vskip-5pt
+
+ \item How to understand these? \high{Microscopic} theories!
+\end{itemize}
+\vfill
+\eject
+
+\title{What is Statistical Mechanics?}
+\vfill
+\begin{itemize}
+ \item Statistical mechanics: understanding how the \high{macroscopic} properties follow from the \high{microscopic} laws of nature (``first principles'').
+\end{itemize}
+\vfill
+\eject
+
+\title{The arrow of time}
+\begin{itemize}
+ \item The microscopic dynamics are \high{reversible}.
+ \begin{itemize}
+ \item Consider the motion of a point particle, which follows the laws of Newtonian mechanics.
+ \item If time is \high{reversed}, the motion still satisfies the \high{same} laws of Newtonian mechanics.
+ \end{itemize}
+
+ \item Many macroscopic phenomena are \high{irreversible}.
+ \begin{itemize}
+ \item For example: friction: the law of friction is not invariant under time reversal.
+ \item Or, consider the expansion of a gas in a container.
+ \end{itemize}
+\end{itemize}
+\vfill
+\eject
+
+\title{The thermodynamic limit}
+\begin{itemize}
+ \item One mole $\approx\ 6.02\times10^{23}$.
+
+ \item Whereas a \high{finite} number of microscopic particles behaves reversibly, an \high{infinite} number of microscopic particles does not.
+
+ \item Fundamental tool of statistical mechanics: the \high{thermodynamic limit}, in which the number of particles $\to\infty$.
+
+\end{itemize}
+\vfill
+\eject
+
+\title{Putting the Statistics in Statistical Mechanics}
+\begin{itemize}
+ \item To understand these infinite particles interacting with each other, we use \high{probability theory}.
+
+ \item Simple example: the free gas:
+ \begin{itemize}
+ \item Each particle is a point, and no two particles interact with each other.
+ \item Probability distribution: \high{Gibbs distribution}
+ $$
+ p(\mathbf x,\mathbf v)=\frac1Z e^{-\beta H(\mathbf x,\mathbf v)}
+ ,\quad
+ \beta:=\frac1{k_BT}
+ $$
+ where $H(\mathbf x,\mathbf v)$ is the energy of the configuration where the particles are located at $\mathbf x\equiv(x_1,\cdots,x_N)$ with velocities $\mathbf v\equiv(v_1,\cdots,v_N)$.
+ \end{itemize}
+\end{itemize}
+\vfill
+\eject
+
+\title{The free gas}
+\begin{itemize}
+ \item The energy is the kinetic energy:
+ $$
+ H(\mathbf x,\mathbf v)=
+ \frac12m\sum_{i=1}^Nv_i^2
+ .
+ $$
+ \vskip-5pt
+
+ \item Denoting the number of particles by $N$ and the volume by $V$, we have
+ $$
+ Z=V^N\left(\frac{2\pi}{\beta m}\right)^{\frac32N}
+ .
+ $$
+ \vskip-5pt
+
+ \item The pressure can be computed to be
+ $$
+ p
+ =\frac N{\beta V}
+ \equiv\frac{Nk_BT}V
+ $$
+ that is, the ideal gas law.
+\end{itemize}
+\vfill
+\eject
+
+\title{Hard sphere model}
+\begin{itemize}
+ \item Let us now consider a system where the microscopic particles \high{interact}: the \high{hard sphere model}, in which each particle is a sphere of radius $R$, and the interaction is such that no two spheres can overlap.
+
+ \item Probability distribution:
+ $$
+ p(\mathbf x)=\frac1Ze^{\beta\mu N}
+ $$
+ where $\mu$ is the \high{chemical potential} and $\beta=\frac1{k_BT}$.
+\end{itemize}
+\vfill
+\eject
+
+\title{Hard sphere model}
+\vskip-10pt
+\begin{itemize}
+ \item We expect, from numerical simulations, to see two phases: a \high{gaseous} phase and a \high{crystalline} one.
+\end{itemize}
+
+\hfil
+\includegraphics[width=3cm]{gas.png}
+\hfil
+\includegraphics[width=3cm]{crystal.png}
+\vskip-10pt
+
+\begin{itemize}
+ \item In the \high{gaseous phase}, the particles are almost decorrelated: they behave as if they did not interact.
+
+ \item In the \high{crystalline phase}, they form large scale periodic structures: they behave very differently from the non-interacting gas.
+\end{itemize}
+
+\vfill
+\eject
+
+\title{Hard sphere model}
+\begin{itemize}
+ \item The \high{gaseous phase} is very well understood. Much about it can be computed using analytic expansions (called ``cluster expansions'' or ``Mayer expansions'').
+
+ \item The \high{crystalline phase} is much more of a mystery: we still lack a proof that it exists at positive temperatures!
+
+ \item \high{Open Problem}: prove that hard spheres crystallize at sufficiently low temperatures.
+\end{itemize}
+\vfill
+\eject
+
+\title{Liquid crystals}
+\begin{itemize}
+ \item Phase of matter that shares properties of \high{liquids} (disorder) and \high{crystals} (order).
+
+ \item Nematic liquid crystals: order in orientation, disorder in position.
+\end{itemize}
+\hfil\includegraphics[width=4cm]{nematic.png}
+\vfill
+\eject
+
+\title{Liquid crystals}
+\begin{itemize}
+ \item Model: hard cylinders.
+
+ \item Expected phases: \high{gas}, \high{nematic}, \high{smectic}
+\end{itemize}
+\hfil\includegraphics[height=4cm]{gas-rods.png}
+\hfil\includegraphics[height=4cm]{nematic.png}
+\hfil\includegraphics[height=4cm]{smectic.png}
+\vfill
+\eject
+
+\title{Liquid crystals}
+\begin{itemize}
+ \item Here again, the gas phase is well understood, but neither the nematic nor the smectic have yet been proved to exist.
+
+ \item \high{Open Problem}: Prove the existence of a nematic or smectic phase.
+\end{itemize}
+\vfill
+\eject
+
+\title{Continuous symmetry breaking}
+\begin{itemize}
+ \item Difficulty for both the hard spheres and liquid crystals: \high{breaking a continuous symmetry} (translation for the hard spheres, rotation for the liquid crystals).
+
+ \item Continuous symmetries cannot\textsuperscript{$\ast$} be broken in one or two dimensions.
+
+ \item Continuous symmetry breaking can, so far, only be proved in very special models.
+\end{itemize}
+\vfill
+\eject
+
+\title{Lattice models}
+\begin{itemize}
+ \item Many examples:
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=1.2cm]{diamond.pdf}
+\hfil\includegraphics[width=1.2cm]{cross.pdf}
+\hfil\includegraphics[width=1.2cm]{hexagon.pdf}
+\par
+\vfill
+\hfil\includegraphics[width=0.9cm]{V_triomino.pdf}
+\hfil\includegraphics[width=0.9cm]{T_tetromino.pdf}
+\hfil\includegraphics[width=0.9cm]{L_tetromino.pdf}
+\hfil\includegraphics[width=0.9cm]{P_pentomino.pdf}
+\vfill
+\eject
+
+\title{Hard diamond model}
+\hfil\includegraphics[height=6cm]{diamonds.pdf}
+\vfill
+\eject
+
+\addtocounter{page}{-1}
+\title{Hard diamond model}
+\hfil\includegraphics[height=6cm]{diamonds_color.pdf}
+\vfill
+\eject
+
+\title{Hard diamond model}
+\vfill
+\begin{itemize}
+ \item Idea: treat the vacancies as a gas of ``virtual particles''.
+
+ \item Can prove crystallization for a large class of lattice models.
+\end{itemize}
+\vfill
+\eject
+
+\title{Hard rods on a lattice}
+\begin{itemize}
+ \item Model: rods of length $k$ on $\mathbb Z^2$.
+\end{itemize}
+\hfil\includegraphics[height=5cm]{rods.pdf}
+\vfill
+\eject
+
+\title{Hard rods on a lattice}
+\begin{itemize}
+ \item Can prove that, when $k^{-2}\ll\rho\ll k^{-1}$, the system forms a nematic phase.
+
+ \item For larger densities, one expects yet another phase, in which there are tiles of horizontal and vertical rods.
+
+ \item \high{Open Problem}: generalization to 3 dimensions.
+\end{itemize}
+\vfill
+\eject
+
+\title{Conclusion}
+\begin{itemize}
+ \item Statistical Mechanics establishes a \high{link} between \high{Microscopic} theories and \high{Macroscopic} behavior.
+
+ \item (In equilibrium) it consists in studying the properties of special probability distributions called \high{Gibbs Measures}.
+
+ \item Even simple models pose significant mathematical challenges.
+
+ \item Still, much can be said about \high{lattice models}, even though there are many problems that are \high{still open}!
+\end{itemize}
+
+\end{document}