Ian Jauslin
summaryrefslogtreecommitdiff
blob: 244fa2d947d1d6acbbf69146be53ba6ec118e96a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
\documentclass{ian-presentation}

\usepackage[hidelinks]{hyperref}
\usepackage{graphicx}
\usepackage{array}

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf\Large
\hfil A simple equation to study interacting Bose gasses\par
\vfil
\large
\hfil Ian Jauslin
\normalsize
\vfil
\hfil\rm joint with {\bf Eric A. Carlen}, {\bf Elliott H. Lieb}\par
\vfil
arXiv:{\tt \href{https://arxiv.org/abs/1912.04987}{1912.04987}}
\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
\eject

\setcounter{page}1
\pagestyle{plain}

\title{Lieb's simple equation (1963)}
\vskip-10pt
\begin{itemize}
  \item \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}: $x\in\mathbb R^d$
  $$
    (-\Delta+v(x)+4e)u(x)=v(x)+2e\rho\ u\ast u(x)
  $$
  $$
    e=\frac\rho2\int dx\ (1-u(x))v(x)
  $$
  \item with
  $$
    \rho>0
    ,\quad
    v(x)\geqslant 0
    ,\quad
    v\in L_1\cap L_{\frac d2+\epsilon}(\mathbb R^d)
  $$
  \item and
  $$
    u\in L_1(\mathbb R^d)
    ,\quad
    u\ast u(x):=\int dy\ u(x-y)u(y)
  $$
\end{itemize}
\vfill
\eject

\title{Interacting Bose gas}
\vskip-10pt
\begin{itemize}
  \item State: symmetric wave functions in a finite box of volume $V$ with periodic boundary conditions:
  $$
    \psi(x_1,\cdots,x_N)
    ,\quad
    x_i\in \Lambda_d:=V^{\frac1d}\mathbb T^d
  $$
  \item Probability distribution: $|\psi(x_1,\cdots,x_N)|^2$
  \item $N$-particle Hamiltonian:
  $$
    H_N:=
    -\frac12\sum_{i=1}^N\Delta_i
    +\sum_{1\leqslant i<j\leqslant N}v(x_i-x_j)
  $$
  with $v(x-y)\geqslant 0$ and $v\in L_1\cap L_{\frac d2+\epsilon}(\mathbb R^d)$.
\end{itemize}
\vfill
\eject

\title{Interacting Bose gas}
\vskip-10pt
\begin{itemize}
  \item Ground state:
  $$
    H_N\psi_0=E_0\psi_0
    ,\quad
    E_0=\min\mathrm{spec}(H_N)
  $$
  \item Compute the ground state-energy per particle in the thermodynamic limit:
  $$
    e_0:=\lim_{\displaystyle\mathop{\scriptstyle V,N\to\infty}_{\frac NV=\rho}}\frac{E_0}N
  $$
\end{itemize}
\vfill
\eject

\title{Asymptotics for the Bose gas}
\vskip-10pt
\begin{itemize}
  \item {\bf Theorem} \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}: if $\hat v(k):=\int dx\ e^{ikx}v(x)\geqslant 0$, then
  $$
    \frac{e_0}{\rho}\mathop{\longrightarrow}_{\rho\to\infty}\frac12\int dx\ v(x)
  $$
  \item {\bf Theorem} \href{https://doi.org/10.1103/PhysRevLett.80.2504}{[Lieb, Yngvason, 1998]}: in 3 dimensions ($a$: scattering length)
  $$
    \frac{e_0}{\rho}\mathop{\longrightarrow}_{\rho\to0}2\pi a
  $$
  \href{https://doi.org/10.1103/PhysRev.106.1135}{[Lee, Huang, Yang, 1957]}, \href{https://doi.org/10.1007/s10955-009-9792-3}{[Yau, Yin, 2009]}, \href{https://arxiv.org/abs/1904.06164}{[Fournais, Solovej, 2019]}:
  $$
    e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)
  $$
\end{itemize}
\vfill
\eject

\title{Simple equation for $v(x)=e^{-|x|}$ in 3 dimensions}
\hfil\includegraphics[height=6cm]{erho_effective.pdf}
\vfill
\eject

\title{Main Theorem}
\vskip-5pt
\begin{itemize}
  \item If $v(x)\geqslant 0$ and $v\in L_1\cap L_{\frac d2+\epsilon}(\mathbb R^d)$, then Lieb's simple equation
  $$
    (-\Delta+4e+v)u=v+2e\rho u\ast u
    ,\quad
    e=\frac\rho2\int dx\ (1-u(x))v(x)
  $$
  has an integrable solution (proved constructively), with $0\leqslant u\leqslant 1$.

  \item For $d=3$,
  $$
    e=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)
    ,\quad
    \frac{e}\rho\mathop{\longrightarrow}_{\rho\to\infty}\frac12\int dx\ v(x)
    .
  $$

  \item For $d=3$, if $v(x)\equiv v(|x|)$ is radially symmetric and decays exponentially,
  $$
    u(|x|)\mathop\sim_{|x|\to\infty}\frac\alpha{|x|^4}
    .
  $$
\end{itemize}
\vfill
\eject

\title{Existence of a solution (sketch)}
\begin{itemize}
  \item Simple equation: fixed $\rho>0$,
  $$
    (-\Delta+4e+v)u=v+2e\rho u\ast u
    ,\quad
    e=\frac\rho2\int dx\ (1-u(x))v(x)
  $$

  \item Change the point of view: fix $e>0$, and compute $\rho$ and $u$.

  \item Iteration: $u_0=0$,
  $$
    (-\Delta+4e+v)u_n=v+2e\rho_{n-1}u_{n-1}\ast u_{n-1}
    ,\quad
    \rho_n:=\frac{2e}{\int dx\ (1-u_n(x))v(x)}
    .
  $$
\end{itemize}
\vfill
\eject

\title{Existence of a solution (sketch)}
\begin{itemize}
  $$
    u_n=(-\Delta+4e+v)^{-1}\left(v+2e\rho_{n-1}u_{n-1}\ast u_{n-1}\right)
    ,\quad
    \rho_n:=\frac{2e}{\int dx\ (1-u_n(x))v(x)}
    .
  $$
  \item $u_n(x)$ is an increasing sequence: since $v\geqslant 0$,
  \begin{itemize}
    \item $(-\Delta+4e+v)^{-1}$ is positivity preserving.
    \item $\rho_n$ is an increasing function of $u_n$.
  \end{itemize}
\end{itemize}
\vfill
\eject

\title{Existence of a solution (sketch)}
\begin{itemize}
  $$
    -\Delta u_n=(1-u_n)v-4eu_n+2e\rho_{n-1}u_{n-1}\ast u_{n-1}
    ,\quad
    \frac{2e}{\rho_n}=\int dx\ (1-u_n(x))v(x)
    .
  $$
  \item $\int dx\ u_n(x)<\frac1{\rho_n}$: integrating,
  $$
    0=\frac{2e}{\rho_n}-4e\int u_n+2e\rho_{n-1}\left(\int u_{n-1}\right)^2
    <
    \frac{2e}{\rho_n}-2e\int u_n
  $$
  (since $\int u_{n-1}<\frac1{\rho_{n-1}}$ and $\int u_{n-1}\leqslant\int u_n$).
\end{itemize}
\vfill
\eject

\title{Existence of a solution (sketch)}
\begin{itemize}
  $$
    -\Delta u_n=(1-u_n)v-4eu+2e\rho_{n-1}u_{n-1}\ast u_{n-1}
    ,\quad
    \frac{2e}{\rho_n}=\int dx\ (1-u_n(x))v(x)
    .
  $$
  \item $u_n(x)\leqslant 1$: since $v\geqslant 0$,
  \begin{itemize}
    \item for $x\in\Sigma:=\{x:\ u_n(x)>1\}$,
    $$
      -\Delta u_n<-4e+2e\rho_{n-1}u_{n-1}\ast u_{n-1}
      \leqslant-2e
      <0
    $$
    (since $u_{n-1}\ast u_{n-1}\leqslant\|u_{n-1}\|_\infty\| u_{n-1}\|_1<\frac1{\rho_{n-1}}$).
    \item Therefore $u_n$ is subharmonic on $\Sigma$, so it reaches its maximum on $\partial\Sigma$.
    But, for $x\in\partial\Sigma$, $u_n(x)=1$, so $u_n(x)\leqslant 1$ in $\Sigma$, so $\Sigma=\emptyset$.
  \end{itemize}
\end{itemize}
\vfill
\eject

\title{Uniqueness}
\begin{itemize}
  \item In addition, one can prove that the limiting $u$ is the unique non-negative integrable solution of the simple equation, for every fixed $e$.

  \item In addition, we prove that $e\mapsto\rho(e)$ is continuous, and $\rho(0)=0$ and $\rho(\infty)=\infty$, which allows us to  compute solutions for the problem at fixed $\rho$.
  
  \item In order to show uniqueness of the solution of the simple equation for fixed $\rho$, one would have to show that $e\mapsto\rho(e)$ is monotone.
  
  \item Nevertheless, all non-negative integrable solutions are obtained by taking the limit of the sequence $u_n$ with the appropriate $e$.
\end{itemize}
\vfill
\eject

\title{Asymptotics (sketch)}
\vskip-10pt
\begin{itemize}
  $$
    -\Delta u=(1-u)v-4eu+2e\rho u\ast u
    ,\quad
    e=\frac\rho2\int dx\ (1-u(x))v(x)
    .
  $$
  \item When $\rho$ is small, $e$ is small as well, so the solution $u$ is {\it not too far from} the solution of the scattering equation
  $$
    (-\Delta+v)\varphi=v
    .
  $$

  \item The energy of $\varphi$ is
  $$
    \frac\rho 2\int dx\ (1-\varphi(x))v(x)=2\pi\rho a
  $$
  which yields the first term in the expansion.
\end{itemize}
\vfill
\eject

\title{Asymptotics (sketch)}
  $$
    -\Delta u=(1-u)v-4eu+2e\rho u\ast u
    ,\quad
    \frac{2e}\rho=\int dx\ (1-u(x))v(x)
    .
  $$
\begin{itemize}
  \item We work in Fourier space:
  $$
    \rho \hat u(k)=\frac{k^2}{4e}+1-\sqrt{\left(\frac{k^2}{4e}+1\right)^2-\frac\rho{2e}\hat S(k)}
  $$
  where $\hat S$ is the Fourier transform of $(1-u)v$.

  \item Small $e$ is related to small $k$. We approximate $\hat S(k)$ by $\hat S(0)=\frac{2e}\rho$, and control the error terms.
\end{itemize}
\vfill
\eject

\title{Decay (sketch)}
$$
  u=(-\Delta+4e)^{-1}\left((1-u)v+2e\rho u\ast u\right)
  ,\quad
  e=\frac\rho2\int dx\ (1-u(x))v(x)
$$
\begin{itemize}
  \item $(-\Delta+4e)^{-1}$ has an exponentially decaying kernel, so $u$ cannot decay faster than $2e\rho u\ast u$.

  \item This is true for algebraically decaying functions: if $u\sim \alpha|x|^{-n}$ with $n>3$, then
  $$
    u\ast u\sim \frac{2\alpha\int u}{|x|^n}.
  $$

  \item But why $|x|^{-4}$?
\end{itemize}
\vfill
\eject

\title{Decay (sketch)}
$$
  u=(-\Delta+4e)^{-1}\left((1-u)v+2e\rho u\ast u\right)
$$
\begin{itemize}
  \item $w:=2e\rho (-\Delta+4e)^{-1}u$ satisfies
  $$
    w=2e\rho (-\Delta+4e)^{-2}(1-u)v+w\ast w\geqslant w\ast w
    ,\quad
    \int w=\frac12
    .
  $$
  \item {\bf Theorem} \href{https://arxiv.org/abs/2002.04184}{[Carlen, Jauslin, Lieb, Loss, 2020]}: for $0\leqslant \alpha<1$,
  $$
    \int dx\ |x|w(x)=\infty
    ,\quad
    \int dx\ |x|^\alpha w(x)<\infty
    .
  $$
  Furthermore, $w\geqslant 0$.
\end{itemize}
\vfill
\eject

\title{Full equation}
\hfil\includegraphics[height=5.5cm]{erho_fulleq.pdf}

\hfil{\footnotesize Monte Carlo computation courtesy of M. Holzmann}
\vfill
\eject

\title{Condensate fraction}
\hfil\includegraphics[height=5.5cm]{condensate.pdf}

\hfil{\footnotesize Monte Carlo computation courtesy of M. Holzmann}
\vfill

\title{Conclusion}
\vfill
\begin{itemize}
  \item Simple equation: correct asymptotics for the ground state energy at both high and low densities.

  \item Condensate fraction seems right at low densities.

  \item Intriguing non-linear PDE.

  \item Proved existence, asymptotics, and decay rate.

  \item Full equation: does even better for the energy and condensate fraction.
\end{itemize}
\vfill
\eject

\title{Open problems and conjectures}
\begin{itemize}
  \item Monotonicity of $e\mapsto\rho(e)$, and concavity of $e\mapsto\frac1{\rho(e)}$ (would imply uniqueness). (So far, we have proofs for small and large $\rho$.)

  \item Condensate fraction: prove that $0\leqslant\eta\leqslant 1$. (Again, we have a proof for small and large $\rho$.)

  \item Other equations: interpolate between full equation and simple equation.

  \item Potentials which are not $\geqslant 0$?
\end{itemize}

\end{document}