\documentclass{ian-presentation} \usepackage[hidelinks]{hyperref} \usepackage{graphicx} \usepackage{array} \begin{document} \pagestyle{empty} \hbox{}\vfil \bf\Large \hfil A simple equation to study interacting Bose gasses\par \vfil \large \hfil Ian Jauslin \normalsize \vfil \hfil\rm joint with {\bf Eric A. Carlen}, {\bf Elliott H. Lieb}\par \vfil arXiv:{\tt \href{https://arxiv.org/abs/1912.04987}{1912.04987}} \hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} \eject \setcounter{page}1 \pagestyle{plain} \title{Lieb's simple equation (1963)} \vskip-10pt \begin{itemize} \item \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}: $x\in\mathbb R^d$ $$ (-\Delta+v(x)+4e)u(x)=v(x)+2e\rho\ u\ast u(x) $$ $$ e=\frac\rho2\int dx\ (1-u(x))v(x) $$ \item with $$ \rho>0 ,\quad v(x)\geqslant 0 ,\quad v\in L_1\cap L_{\frac d2+\epsilon}(\mathbb R^d) $$ \item and $$ u\in L_1(\mathbb R^d) ,\quad u\ast u(x):=\int dy\ u(x-y)u(y) $$ \end{itemize} \vfill \eject \title{Interacting Bose gas} \vskip-10pt \begin{itemize} \item State: symmetric wave functions in a finite box of volume $V$ with periodic boundary conditions: $$ \psi(x_1,\cdots,x_N) ,\quad x_i\in \Lambda_d:=V^{\frac1d}\mathbb T^d $$ \item Probability distribution: $|\psi(x_1,\cdots,x_N)|^2$ \item $N$-particle Hamiltonian: $$ H_N:= -\frac12\sum_{i=1}^N\Delta_i +\sum_{1\leqslant i0$, $$ (-\Delta+4e+v)u=v+2e\rho u\ast u ,\quad e=\frac\rho2\int dx\ (1-u(x))v(x) $$ \item Change the point of view: fix $e>0$, and compute $\rho$ and $u$. \item Iteration: $u_0=0$, $$ (-\Delta+4e+v)u_n=v+2e\rho_{n-1}u_{n-1}\ast u_{n-1} ,\quad \rho_n:=\frac{2e}{\int dx\ (1-u_n(x))v(x)} . $$ \end{itemize} \vfill \eject \title{Existence of a solution (sketch)} \begin{itemize} $$ u_n=(-\Delta+4e+v)^{-1}\left(v+2e\rho_{n-1}u_{n-1}\ast u_{n-1}\right) ,\quad \rho_n:=\frac{2e}{\int dx\ (1-u_n(x))v(x)} . $$ \item $u_n(x)$ is an increasing sequence: since $v\geqslant 0$, \begin{itemize} \item $(-\Delta+4e+v)^{-1}$ is positivity preserving. \item $\rho_n$ is an increasing function of $u_n$. \end{itemize} \end{itemize} \vfill \eject \title{Existence of a solution (sketch)} \begin{itemize} $$ -\Delta u_n=(1-u_n)v-4eu_n+2e\rho_{n-1}u_{n-1}\ast u_{n-1} ,\quad \frac{2e}{\rho_n}=\int dx\ (1-u_n(x))v(x) . $$ \item $\int dx\ u_n(x)<\frac1{\rho_n}$: integrating, $$ 0=\frac{2e}{\rho_n}-4e\int u_n+2e\rho_{n-1}\left(\int u_{n-1}\right)^2 < \frac{2e}{\rho_n}-2e\int u_n $$ (since $\int u_{n-1}<\frac1{\rho_{n-1}}$ and $\int u_{n-1}\leqslant\int u_n$). \end{itemize} \vfill \eject \title{Existence of a solution (sketch)} \begin{itemize} $$ -\Delta u_n=(1-u_n)v-4eu+2e\rho_{n-1}u_{n-1}\ast u_{n-1} ,\quad \frac{2e}{\rho_n}=\int dx\ (1-u_n(x))v(x) . $$ \item $u_n(x)\leqslant 1$: since $v\geqslant 0$, \begin{itemize} \item for $x\in\Sigma:=\{x:\ u_n(x)>1\}$, $$ -\Delta u_n<-4e+2e\rho_{n-1}u_{n-1}\ast u_{n-1} \leqslant-2e <0 $$ (since $u_{n-1}\ast u_{n-1}\leqslant\|u_{n-1}\|_\infty\| u_{n-1}\|_1<\frac1{\rho_{n-1}}$). \item Therefore $u_n$ is subharmonic on $\Sigma$, so it reaches its maximum on $\partial\Sigma$. But, for $x\in\partial\Sigma$, $u_n(x)=1$, so $u_n(x)\leqslant 1$ in $\Sigma$, so $\Sigma=\emptyset$. \end{itemize} \end{itemize} \vfill \eject \title{Uniqueness} \begin{itemize} \item In addition, one can prove that the limiting $u$ is the unique non-negative integrable solution of the simple equation, for every fixed $e$. \item In addition, we prove that $e\mapsto\rho(e)$ is continuous, and $\rho(0)=0$ and $\rho(\infty)=\infty$, which allows us to compute solutions for the problem at fixed $\rho$. \item In order to show uniqueness of the solution of the simple equation for fixed $\rho$, one would have to show that $e\mapsto\rho(e)$ is monotone. \item Nevertheless, all non-negative integrable solutions are obtained by taking the limit of the sequence $u_n$ with the appropriate $e$. \end{itemize} \vfill \eject \title{Asymptotics (sketch)} \vskip-10pt \begin{itemize} $$ -\Delta u=(1-u)v-4eu+2e\rho u\ast u ,\quad e=\frac\rho2\int dx\ (1-u(x))v(x) . $$ \item When $\rho$ is small, $e$ is small as well, so the solution $u$ is {\it not too far from} the solution of the scattering equation $$ (-\Delta+v)\varphi=v . $$ \item The energy of $\varphi$ is $$ \frac\rho 2\int dx\ (1-\varphi(x))v(x)=2\pi\rho a $$ which yields the first term in the expansion. \end{itemize} \vfill \eject \title{Asymptotics (sketch)} $$ -\Delta u=(1-u)v-4eu+2e\rho u\ast u ,\quad \frac{2e}\rho=\int dx\ (1-u(x))v(x) . $$ \begin{itemize} \item We work in Fourier space: $$ \rho \hat u(k)=\frac{k^2}{4e}+1-\sqrt{\left(\frac{k^2}{4e}+1\right)^2-\frac\rho{2e}\hat S(k)} $$ where $\hat S$ is the Fourier transform of $(1-u)v$. \item Small $e$ is related to small $k$. We approximate $\hat S(k)$ by $\hat S(0)=\frac{2e}\rho$, and control the error terms. \end{itemize} \vfill \eject \title{Decay (sketch)} $$ u=(-\Delta+4e)^{-1}\left((1-u)v+2e\rho u\ast u\right) ,\quad e=\frac\rho2\int dx\ (1-u(x))v(x) $$ \begin{itemize} \item $(-\Delta+4e)^{-1}$ has an exponentially decaying kernel, so $u$ cannot decay faster than $2e\rho u\ast u$. \item This is true for algebraically decaying functions: if $u\sim \alpha|x|^{-n}$ with $n>3$, then $$ u\ast u\sim \frac{2\alpha\int u}{|x|^n}. $$ \item But why $|x|^{-4}$? \end{itemize} \vfill \eject \title{Decay (sketch)} $$ u=(-\Delta+4e)^{-1}\left((1-u)v+2e\rho u\ast u\right) $$ \begin{itemize} \item $w:=2e\rho (-\Delta+4e)^{-1}u$ satisfies $$ w=2e\rho (-\Delta+4e)^{-2}(1-u)v+w\ast w\geqslant w\ast w ,\quad \int w=\frac12 . $$ \item {\bf Theorem} \href{https://arxiv.org/abs/2002.04184}{[Carlen, Jauslin, Lieb, Loss, 2020]}: for $0\leqslant \alpha<1$, $$ \int dx\ |x|w(x)=\infty ,\quad \int dx\ |x|^\alpha w(x)<\infty . $$ Furthermore, $w\geqslant 0$. \end{itemize} \vfill \eject \title{Full equation} \hfil\includegraphics[height=5.5cm]{erho_fulleq.pdf} \hfil{\footnotesize Monte Carlo computation courtesy of M. Holzmann} \vfill \eject \title{Condensate fraction} \hfil\includegraphics[height=5.5cm]{condensate.pdf} \hfil{\footnotesize Monte Carlo computation courtesy of M. Holzmann} \vfill \title{Conclusion} \vfill \begin{itemize} \item Simple equation: correct asymptotics for the ground state energy at both high and low densities. \item Condensate fraction seems right at low densities. \item Intriguing non-linear PDE. \item Proved existence, asymptotics, and decay rate. \item Full equation: does even better for the energy and condensate fraction. \end{itemize} \vfill \eject \title{Open problems and conjectures} \begin{itemize} \item Monotonicity of $e\mapsto\rho(e)$, and concavity of $e\mapsto\frac1{\rho(e)}$ (would imply uniqueness). (So far, we have proofs for small and large $\rho$.) \item Condensate fraction: prove that $0\leqslant\eta\leqslant 1$. (Again, we have a proof for small and large $\rho$.) \item Other equations: interpolate between full equation and simple equation. \item Potentials which are not $\geqslant 0$? \end{itemize} \end{document}