Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Jauslin_SIAM_2020.tex')
-rw-r--r--Jauslin_SIAM_2020.tex222
1 files changed, 222 insertions, 0 deletions
diff --git a/Jauslin_SIAM_2020.tex b/Jauslin_SIAM_2020.tex
new file mode 100644
index 0000000..1cef79f
--- /dev/null
+++ b/Jauslin_SIAM_2020.tex
@@ -0,0 +1,222 @@
+\documentclass{ian-presentation}
+
+\usepackage[hidelinks]{hyperref}
+\usepackage{graphicx}
+\usepackage{array}
+\usepackage{xcolor}
+
+
+\definecolor{ipurple}{HTML}{4B0082}
+\definecolor{iyellow}{HTML}{DAA520}
+\definecolor{igreen}{HTML}{32CD32}
+\definecolor{iblue}{HTML}{4169E1}
+\definecolor{ired}{HTML}{DC143C}
+
+\definecolor{highlight}{HTML}{328932}
+\definecolor{highlight}{HTML}{981414}
+
+\begin{document}
+\pagestyle{empty}
+\hbox{}\vfil
+\bf\Large
+\hfil An effective equation to study Bose gasses\par
+\smallskip
+\hfil at all densities\par
+\vfil
+\large
+\hfil Ian Jauslin
+\normalsize
+\vfil
+\hfil\rm joint with {\bf Eric A. Carlen}, {\bf Markus Holzmann}, {\bf Elliott H. Lieb}\par
+\vfil
+arXiv:{\tt \href{https://arxiv.org/abs/1912.04987}{1912.04987}}
+\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
+\eject
+
+\setcounter{page}1
+\pagestyle{plain}
+
+\title{Repulsive Bose gas}
+\begin{itemize}
+ \item Potential: {\color{highlight}$v(r)\geqslant 0$} and {\color{highlight}$v\in L_1(\mathbb R^3)$}, Hamiltonian:
+ $$
+ H_N:=
+ -\frac12\sum_{i=1}^N\Delta_i
+ +\sum_{1\leqslant i<j\leqslant N}v(|x_i-x_j|)
+ $$
+ \item Ground state: $\psi_0$, energy $E_0$.
+ \item Observables in the {\color{highlight}thermodynamic limit}: ground state energy per particle and condensate fraction:
+ $$
+ e_0:=\lim_{\displaystyle\mathop{\scriptstyle V,N\to\infty}_{{\color{highlight}\frac NV=\rho}}}\frac{E_0}N
+ ,\quad
+ \eta_0:=\lim_{\displaystyle\mathop{\scriptstyle V,N\to\infty}_{{\color{highlight}\frac NV=\rho}}}\frac1N\left<\psi_0\right|\sum_{i=1}^N\int\frac{dx_i}V\left|\psi_0\right>
+ .
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Effective theories}
+\begin{itemize}
+ \item {\color{highlight}Bogolubov} theory: {\color{highlight}approximation scheme} that makes $H$ {\color{highlight}integrable}.
+ \item Low density predictions \href{https://doi.org/10.1103/PhysRev.106.1135}{[Lee, Huang, Yang, 1957]}:
+ \begin{itemize}
+ \item Energy:
+ $$
+ {\color{highlight}e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)}
+ $$
+ \vskip-10pt
+ \item Condensate fraction:
+ $$
+ {\color{highlight}1-\eta_0\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi}}
+ $$
+ \end{itemize}
+ \item At high density: {\color{highlight}Hartree mean-field theory}.
+\end{itemize}
+\vfill
+\eject
+
+\title{Mathematical results}
+\begin{itemize}
+ \item Energy asymptotics: {\color{highlight} proved}:
+ \href{https://doi.org/10.1103/PhysRevLett.80.2504}{[Lieb, Yngvason, 1998]},
+ \href{https://doi.org/10.1007/s10955-009-9792-3}{[Yau, Yin, 2009]},
+ \href{https://arxiv.org/abs/1904.06164}{[Fournais, Solovej, 2019]}
+
+ \item Condensate fraction: {\color{highlight}still open} in the thermodynamic limit.
+
+ \item At high density, {\color{highlight}proved} in \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}.
+ $$
+ {\color{highlight}e_0\sim\frac\rho2\int v}
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Energy as a function of density}
+For $v(x)=e^{-|x|}$:
+
+\hfil\includegraphics[height=5.5cm]{erho_lowhigh.pdf}
+\vfill
+\eject
+
+\addtocounter{page}{-1}
+\title{Energy as a function of density}
+For $v(x)=e^{-|x|}$:
+
+\hfil\includegraphics[height=5.5cm]{erho_effective.pdf}
+\vfill
+\eject
+
+\title{{\color{ipurple}Big equation}}
+\begin{itemize}
+\item Solve for
+\begin{equation}
+ u(x_2-x_1):=1-\frac{\int \frac{dx_3}V\cdots\frac{dx_N}V\ \psi_0(x_1,\cdots,x_N)}{\int \frac{dx_1}V\cdots\frac{dx_N}V\ \psi_0(x_1,\cdots,x_N)}
+\end{equation}
+\item {\color{ipurple}``Big'' equation}:
+ $${\color{ipurple}
+ -\Delta u(x)
+ =
+ (1-u(x))\left(v(x)-2\rho u\ast S(x)+\rho^2 u\ast u\ast S(x)\right)
+ }$$
+ $$
+ S(y):=(1-u(y))v(y)
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{{\color{iblue}Simple equation}}
+\vskip-10pt
+\begin{itemize}
+ \item Further approximate $S(x)\approx\frac{2e}\rho\delta(x)$ and $u\ll 1$.
+ \item {\color{iblue}Simple equation}:
+ $$
+ {\color{iblue}-\Delta u(x)=(1-u(x))v(x)- 4eu(x)+2e\rho\ u\ast u(x)}
+ $$
+ $$
+ e=\frac\rho2\int dx\ (1-u(x))v(x)
+ $$
+ \item {\bf Theorem 1}:
+ If $v(x)\geqslant 0$ and $v\in L_1\cap L_2(\mathbb R^3)$, then the {\color{iblue}simple equation} has an {\color{highlight}integrable solution} (proved constructively), with $0\leqslant u\leqslant 1$.
+\end{itemize}
+\vfill
+\eject
+
+\title{Energy for the {\color{iblue}simple equation}}
+\vskip-10pt
+\begin{itemize}
+ \item {\bf Theorem 2}:
+ $$
+ \frac{e}{\rho}\mathop{\longrightarrow}_{\rho\to\infty}\frac12\int dx\ v(x)
+ $$
+ (note that there is no condition that $\hat v\geqslant 0$).
+ This coincides with the {\color{highlight}Hartree energy}.
+ \item {\bf Theorem 3}:
+ $$
+ e=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)
+ $$
+ This coincides with the {\color{highlight}Lee-Huang-Yang prediction}.
+\end{itemize}
+\vfill
+\eject
+
+\title{Energy}
+$v(x)=e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo}
+
+\hfil\includegraphics[height=5.5cm]{erho_fulleq.pdf}
+\vfill
+\eject
+
+\title{Condensate fraction}
+\begin{itemize}
+ \item {\bf Theorem 4}:
+ For the {\color{iblue}simple equation}, as $\rho\to0$
+ $$
+ 1-\eta\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi}
+ $$
+ which coincides with {\color{highlight}Bogolubov's prediction}.
+\end{itemize}
+\vfill
+\eject
+
+\title{Condensate fraction}
+$v(x)=e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo}
+
+\hfil\includegraphics[height=5.5cm]{condensate.pdf}
+\vfill
+\eject
+
+\title{Limitations of the simple and big equations}
+\begin{itemize}
+ \item Only works at high densities for {\color{highlight}$\hat v\geqslant 0$}.
+ \item Less accurate for {\color{highlight}large potentials}: for $v(x)=16e^{-|x|}$,
+
+ \hfil\includegraphics[width=5.5cm]{energy16.pdf}
+ \hfil\includegraphics[width=5.5cm]{condensate16.pdf}
+\end{itemize}
+\vfill
+\eject
+
+\title{Conclusions and outlooks}
+\begin{itemize}
+ \item Two {\color{highlight}effective equations}: the {\color{ipurple}big equation} and the {\color{iblue}simple equation}, which are {\color{highlight}non-linear 1-particle equations}.
+ \item Reproduce the known results for both {\color{highlight}small and large densities}.
+ \item Their derivation is {\color{highlight}different from Bogolubov theory}, so they may give new insights onto studying the Bose gas in these asymptotic regimes.
+ \item The {\color{ipurple}big equation} is {\color{highlight}quantitatively accurate} at intermediate densities.
+ \item This opens up the possibility of studying the physics of the {\color{highlight}Bose gas at intermediate densities}.
+\end{itemize}
+\vfill
+\eject
+
+\title{Open problems}
+\begin{itemize}
+ \item Analysis of the {\color{iblue}simple equation}: {\color{highlight}Monotonicity} of $e(\rho)$, and {\color{highlight}convexity} of $\rho e(\rho)$. (So far, we have proofs for small and large $\rho$.). Similarly, prove that $0\leqslant\eta\leqslant 1$. (We have a proof for small $\rho$.)
+
+ \item Analysis of the {\color{ipurple}big equation}: everything is still open.
+
+ \item Relate these equations back to the {\color{highlight}many-body Bose gas}.
+\end{itemize}
+
+\end{document}