Ian Jauslin
summaryrefslogtreecommitdiff
blob: 1cef79f9647c3d16316a4fe86a9c73ffd3e3826f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
\documentclass{ian-presentation}

\usepackage[hidelinks]{hyperref}
\usepackage{graphicx}
\usepackage{array}
\usepackage{xcolor}


\definecolor{ipurple}{HTML}{4B0082}
\definecolor{iyellow}{HTML}{DAA520}
\definecolor{igreen}{HTML}{32CD32}
\definecolor{iblue}{HTML}{4169E1}
\definecolor{ired}{HTML}{DC143C}

\definecolor{highlight}{HTML}{328932}
\definecolor{highlight}{HTML}{981414}

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf\Large
\hfil An effective equation to study Bose gasses\par
\smallskip
\hfil at all densities\par
\vfil
\large
\hfil Ian Jauslin
\normalsize
\vfil
\hfil\rm joint with {\bf Eric A. Carlen}, {\bf Markus Holzmann}, {\bf Elliott H. Lieb}\par
\vfil
arXiv:{\tt \href{https://arxiv.org/abs/1912.04987}{1912.04987}}
\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
\eject

\setcounter{page}1
\pagestyle{plain}

\title{Repulsive Bose gas}
\begin{itemize}
  \item Potential: {\color{highlight}$v(r)\geqslant 0$} and {\color{highlight}$v\in L_1(\mathbb R^3)$}, Hamiltonian:
  $$
    H_N:=
    -\frac12\sum_{i=1}^N\Delta_i
    +\sum_{1\leqslant i<j\leqslant N}v(|x_i-x_j|)
  $$
  \item Ground state: $\psi_0$, energy $E_0$.
  \item Observables in the {\color{highlight}thermodynamic limit}: ground state energy per particle and condensate fraction:
  $$
    e_0:=\lim_{\displaystyle\mathop{\scriptstyle V,N\to\infty}_{{\color{highlight}\frac NV=\rho}}}\frac{E_0}N
    ,\quad
    \eta_0:=\lim_{\displaystyle\mathop{\scriptstyle V,N\to\infty}_{{\color{highlight}\frac NV=\rho}}}\frac1N\left<\psi_0\right|\sum_{i=1}^N\int\frac{dx_i}V\left|\psi_0\right>
    .
  $$
\end{itemize}
\vfill
\eject

\title{Effective theories}
\begin{itemize}
  \item {\color{highlight}Bogolubov} theory: {\color{highlight}approximation scheme} that makes $H$ {\color{highlight}integrable}.
  \item Low density predictions \href{https://doi.org/10.1103/PhysRev.106.1135}{[Lee, Huang, Yang, 1957]}:
  \begin{itemize}
    \item Energy:
    $$
      {\color{highlight}e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)}
    $$
    \vskip-10pt
    \item Condensate fraction:
    $$
      {\color{highlight}1-\eta_0\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi}}
    $$
  \end{itemize}
  \item At high density: {\color{highlight}Hartree mean-field theory}.
\end{itemize}
\vfill
\eject

\title{Mathematical results}
\begin{itemize}
  \item Energy asymptotics: {\color{highlight} proved}:
  \href{https://doi.org/10.1103/PhysRevLett.80.2504}{[Lieb, Yngvason, 1998]},
  \href{https://doi.org/10.1007/s10955-009-9792-3}{[Yau, Yin, 2009]},
  \href{https://arxiv.org/abs/1904.06164}{[Fournais, Solovej, 2019]}

  \item Condensate fraction: {\color{highlight}still open} in the thermodynamic limit.

  \item At high density, {\color{highlight}proved} in \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}.
  $$
    {\color{highlight}e_0\sim\frac\rho2\int v}
  $$
\end{itemize}
\vfill
\eject

\title{Energy as a function of density}
For $v(x)=e^{-|x|}$:

\hfil\includegraphics[height=5.5cm]{erho_lowhigh.pdf}
\vfill
\eject

\addtocounter{page}{-1}
\title{Energy as a function of density}
For $v(x)=e^{-|x|}$:

\hfil\includegraphics[height=5.5cm]{erho_effective.pdf}
\vfill
\eject

\title{{\color{ipurple}Big equation}}
\begin{itemize}
\item Solve for
\begin{equation}
  u(x_2-x_1):=1-\frac{\int \frac{dx_3}V\cdots\frac{dx_N}V\ \psi_0(x_1,\cdots,x_N)}{\int \frac{dx_1}V\cdots\frac{dx_N}V\ \psi_0(x_1,\cdots,x_N)}
\end{equation}
\item {\color{ipurple}``Big'' equation}:
  $${\color{ipurple}
    -\Delta u(x)
    =
    (1-u(x))\left(v(x)-2\rho u\ast S(x)+\rho^2 u\ast u\ast S(x)\right)
  }$$
  $$
    S(y):=(1-u(y))v(y)
  $$
\end{itemize}
\vfill
\eject
  
\title{{\color{iblue}Simple equation}}
\vskip-10pt
\begin{itemize}
  \item Further approximate $S(x)\approx\frac{2e}\rho\delta(x)$ and $u\ll 1$.
  \item {\color{iblue}Simple equation}:
  $$
    {\color{iblue}-\Delta u(x)=(1-u(x))v(x)- 4eu(x)+2e\rho\ u\ast u(x)}
  $$
  $$
    e=\frac\rho2\int dx\ (1-u(x))v(x)
  $$
  \item {\bf Theorem 1}:
  If $v(x)\geqslant 0$ and $v\in L_1\cap L_2(\mathbb R^3)$, then the {\color{iblue}simple equation} has an {\color{highlight}integrable solution} (proved constructively), with $0\leqslant u\leqslant 1$.
\end{itemize}
\vfill
\eject

\title{Energy for the {\color{iblue}simple equation}}
\vskip-10pt
\begin{itemize}
  \item {\bf Theorem 2}:
  $$
    \frac{e}{\rho}\mathop{\longrightarrow}_{\rho\to\infty}\frac12\int dx\ v(x)
  $$
  (note that there is no condition that $\hat v\geqslant 0$).
  This coincides with the {\color{highlight}Hartree energy}.
  \item {\bf Theorem 3}:
  $$
    e=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)
  $$
  This coincides with the {\color{highlight}Lee-Huang-Yang prediction}.
\end{itemize}
\vfill
\eject

\title{Energy}
$v(x)=e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo}

\hfil\includegraphics[height=5.5cm]{erho_fulleq.pdf}
\vfill
\eject

\title{Condensate fraction}
\begin{itemize}
  \item {\bf Theorem 4}:
  For the {\color{iblue}simple equation}, as $\rho\to0$
  $$
    1-\eta\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi}
  $$
  which coincides with {\color{highlight}Bogolubov's prediction}.
\end{itemize}
\vfill
\eject

\title{Condensate fraction}
$v(x)=e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo}

\hfil\includegraphics[height=5.5cm]{condensate.pdf}
\vfill
\eject

\title{Limitations of the simple and big equations}
\begin{itemize}
  \item Only works at high densities for {\color{highlight}$\hat v\geqslant 0$}.
  \item Less accurate for {\color{highlight}large potentials}: for $v(x)=16e^{-|x|}$,

  \hfil\includegraphics[width=5.5cm]{energy16.pdf}
  \hfil\includegraphics[width=5.5cm]{condensate16.pdf}
\end{itemize}
\vfill
\eject

\title{Conclusions and outlooks}
\begin{itemize}
  \item Two {\color{highlight}effective equations}: the {\color{ipurple}big equation} and the {\color{iblue}simple equation}, which are {\color{highlight}non-linear 1-particle equations}.
  \item Reproduce the known results for both {\color{highlight}small and large densities}.
  \item Their derivation is {\color{highlight}different from Bogolubov theory}, so they may give new insights onto studying the Bose gas in these asymptotic regimes.
  \item The {\color{ipurple}big equation} is {\color{highlight}quantitatively accurate} at intermediate densities.
  \item This opens up the possibility of studying the physics of the {\color{highlight}Bose gas at intermediate densities}.
\end{itemize}
\vfill
\eject

\title{Open problems}
\begin{itemize}
  \item Analysis of the {\color{iblue}simple equation}: {\color{highlight}Monotonicity} of $e(\rho)$, and {\color{highlight}convexity} of $\rho e(\rho)$. (So far, we have proofs for small and large $\rho$.). Similarly, prove that $0\leqslant\eta\leqslant 1$. (We have a proof for small $\rho$.)

  \item Analysis of the {\color{ipurple}big equation}: everything is still open.

  \item Relate these equations back to the {\color{highlight}many-body Bose gas}.
\end{itemize}

\end{document}