Ian Jauslin
summaryrefslogtreecommitdiff
blob: 441858a80f595f016f520dcdc0acdf3f7e7b8f3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
\documentclass{ian-presentation}

\usepackage[hidelinks]{hyperref}
\usepackage{graphicx}
\usepackage{array}

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf\Large
\hfil Time-evolution of electron emission\par
\smallskip
\hfil from a metal surface\par
\vfil
\large
\hfil Ian Jauslin
\normalsize
\vfil
\hfil\rm joint with {\bf Ovidiu Costin}, {\bf Rodica Costin}, and {\bf Joel L. Lebowitz}\par
\vfil
arXiv:{\tt \href{http://arxiv.org/abs/1808.00936}{1808.00936}}\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
\eject

\setcounter{page}1
\pagestyle{plain}

\title{Field emission}
\vfill
\hfil\includegraphics[height=5cm]{emitter.jpg}
\vfill
\eject

\title{Field emission}
$$
  V(x)=U\Theta(x)
  ,\quad
  E_{\mathrm F}=k_{\mathrm F}^2<U
$$
\hfil\includegraphics[height=5cm]{potential_square.pdf}
\vfill
\eject

\title{Thermal emission}
$$
  V(x)=U\Theta(x)
  ,\quad
  k^2>U
$$
\hfil\includegraphics[height=5cm]{potential_square_thermal.pdf}
\vfill
\eject

\title{Photonic emission}
$$
  V_t(x)=\Theta(x)(U-E_tx)
  ,\quad
  E_t=2\epsilon\omega\cos(\omega t)
$$
\hfil\includegraphics[height=5cm]{potential_square_photonic.pdf}
\vfill
\eject

\title{Field emission}
$$
  V(x)=\Theta(x)(U-Ex)
$$
\hfil\includegraphics[height=5cm]{potential.pdf}
\vfill
\eject

\title{Field emission}
\begin{itemize}
  \item \href{https://doi.org/10.1073\%2Fpnas.14.1.45}{[Millikan, Lauritsen, 1928]}: experimental plot of the logarithm of the current against $1/E$
\end{itemize}
\hfil\includegraphics[height=4.5cm]{Millikan-Lauritsen_current.png}
\vfill
\eject

\title{Field emission through a triangular barrier}
\vfill
\begin{itemize}
  \item \href{https://doi.org/10.1098/rspa.1928.0091}{[Fowler, Nordheim, 1928]}: predicted that the current is, for small $E$,
  $$
    J\approx CE^2e^{-\frac aE}
  $$
  \item (\href{https://doi.org/10.1088/1751-8113/44/5/05530@}{[Rokhlenko, 2011]}: studied the range of applicability of the approximation, and found more accurate approximations for larger fields.)
\end{itemize}
\vfill
\eject

\title{Fowler-Nordheim equation}
\begin{itemize}
  \item Schr\"odinger equation
  $$
    i\partial_t\psi=-\Delta\psi+\Theta(x)(U-Ex)\psi
  $$
  \item Fowler-Nordheim: stationary solution: $\psi_{\mathrm{FN}}(x,t)=e^{-ik^2t}\varphi_{\mathrm{FN}}(x)$
  $$
    \varphi_{\mathrm{FN}}(x)=
    \left\{ \begin{array}{l@{\ }l}
      e^{ikx}+R_Ee^{-ikx} & x<0\\
      T_E\mathrm{Ai}(e^{-\frac{i\pi}3}(E^{\frac13}x-E^{-\frac23}(U-k^2)) & x>0
    \end{array}\right.  
  $$
  $R_E$ and $T_E$ are chosen so that $\varphi_{\mathrm{FN}}$ and $\partial\varphi_{\mathrm{FN}}$ are continuous at $x=0$.
\end{itemize}
\vfill
\eject

\title{Fowler-Nordheim equation}
\vfill
\hfil\includegraphics[height=5.5cm]{asymptotic.pdf}
\vfill
\eject

\title{Initial value problem}
\begin{itemize}
  \item Initial condition:
  $$
    \psi(x,0)=
    \left\{ \begin{array}{l@{\ }l}
      e^{ikx}+R_0e^{-ikx} & x<0\\
      T_0 e^{-\sqrt{U-k^2}x} & x>0
    \end{array}\right.  
  $$
  $R_0$ and $T_0$ ensure that $\psi$ and $\partial\psi$ are continuous.
  \item {\bf Theorem}: $\psi(x,t)$ behaves asymptotically like $\psi_{\mathrm{FN}}$:
  $$
    \psi(x,t)
    =\psi_{\mathrm{FN}}(x,t)+\left(\frac{t}{\tau_E(x)}\right)^{-\frac32}+O(t^{-\frac52})
    .
  $$
\end{itemize}
\vfill
\eject

\title{Photoemission}
\begin{itemize}
  \item Photoelectric effect: early observations: \href{https://doi.org/10.1002/andp.18872670827}{[Hertz, 1887]}, \href{https://doi.org/10.1002/andp.18882690206}{[Hallwachs, 1888]}, \href{https://doi.org/10.1002/andp.19003070611}{[Lenard, 1900]}.
  \item When a metal is irradiated with ultra-violet light, electrons are ionized, with kinetic energies at integer multiples of $\hbar\omega$.
  \item \href{https://doi.org/10.1002/andp.19053220607}{[Einstein, 1905]}: interpretation: quanta of light ({\it photons}) of energy $\hbar\omega$ are absorbed by the electrons, whose kinetic energy is raised by $n\hbar\omega$, and can escape the metal.
\end{itemize}
\vfill
\eject

\title{Photoemission}
\begin{itemize}
  \item Time dependent potential:
  $$
    V_t(x)=\Theta(x)(U-2\epsilon\omega\cos(\omega t)x)
  $$
  \item Magnetic gauge:
  $$
    \Psi(x,t)
    :=\psi(x,t)e^{-ix\Theta(x)A(t)}
    ,\quad
    A(t):=\int_0^t ds\ 2\epsilon\omega\cos(\omega s)
  =
  2\epsilon\sin(\omega t)
  $$
  satisfies
  $$
    i\partial_t\Psi(x,t)=\left((-i\nabla+\Theta(x)A(t))^2+\Theta(x)U\right)\Psi(x,t)
  $$
\end{itemize}
\vfill
\eject

\title{Periodic solution}
\vskip-10pt
\begin{itemize}
  \item \href{https://doi.org/10.1103/PhysRevA.72.023412}{[Faisal, Kami\'nski, Saczuk, 2005]}
  $$
    \Psi_{\mathrm{FKS}}(x,t)=\left\{\begin{array}{ll}
      e^{ikx}\exp\left(-ik^2t\right)+\Psi_R(x,t)&\mathrm{\ if\ }x<0\\
      \Psi_T(x,t)&\mathrm{\ if\ }x>0
    \end{array}\right.
  $$
  $$
    \Psi_R(x,t)=\sum_{M\in\mathbb Z}R_Me^{-iq_Mx}\exp\left(-iq_M^2t\right)
    ,\quad
    q_M=\sqrt{k^2+M\omega}
  $$
  $$
    \Psi_T(x,t)=\sum_{M\in\mathbb Z}T_Me^{ip_Mx}\exp\left(-iUt-i\int_0^td\tau\ (p_M-A(\tau))^2\right)
  $$
  $$
    p_M=\sqrt{k^2-U+M\omega-2\epsilon^2}
  $$
  \item $\Psi(x,t)$, $(-i\nabla+\Theta(x)A(t))\Psi(x,t)$ are continuous.
\end{itemize}
\vfill
\eject

\title{Initial value problem}
\begin{itemize}
  \item Initial condition:
  $$
    \Psi(x,0)=
    \left\{ \begin{array}{l@{\ }l}
      e^{ikx}+R_0e^{-ikx} & x<0\\
      T_0 e^{-\sqrt{U-k^2}x} & x>0
    \end{array}\right.  
  $$
  $R_0$ and $T_0$ ensure that $\Psi$ and $\partial\Psi$ are continuous.
  \item {\bf Conjecture} (in progress): $\Psi(x,t)$ behaves asymptotically like $\Psi_{\mathrm{FKS}}$:
  $$
    \psi(x,t)
    =\psi_{\mathrm{FKS}}(x,t)+\left(\frac{t}{\tau_{\mathrm{FKS}}(x)}\right)^{-\frac32}+O(t^{-\frac52})
    .
  $$
\end{itemize}
\vfill
\eject

\title{Idea of the proof: field emission}
\begin{itemize}
  \item Laplace transform:
  $$
    \hat\psi_p(x):=\int_0^\infty dt\ e^{-pt}\psi(x,t)
  $$
  \item Schr\"odinger equation:
  $$
    (-\Delta+\Theta(x)V(x)-ip)\psi_p(x)=-i\psi(x,0)
    ,\quad
    V(x):=U-Ex
  $$
\end{itemize}
\vfill
\eject

\title{Solution in Laplace space}
\begin{itemize}
  \item For simplicity, $R_0\equiv T_0\equiv0$.
  \item Solution:
  $$
    \hat\psi_p(x)=
    \left\{\begin{array}{>\displaystyle l@{\ }l}
      c(p)e^{\sqrt{-ip}x}-\frac{ie^{ikx}}{-ip+k^2}
      &\mathrm{if\ }x<0\\[0.5cm]
      d(p)\varphi_p(x)
      &\mathrm{if\ }x> 0
    \end{array}\right.
  $$
  with
  $$
    (-\Delta+V(x)-ip)\varphi_p(x)=0
  $$
  $$
    \varphi_p(x)=\mathrm{Ai}\left(e^{-\frac{i\pi}3}\left(E^{\frac13}x-E^{-\frac23}(U-ip)\right)\right)
  $$
\end{itemize}
\vfill
\eject

\title{Solution in Laplace space}
\begin{itemize}
  \item $c$ and $d$ ensure that $\hat\psi_p(x)$ and $\partial\hat\psi_p(x)$ are continuous at $x=0$:
  $$
    c(p)=\frac{i(ik\varphi_p(0)-\partial\varphi_p(0))}{(-ip+k^2)(\sqrt{-ip}\varphi_p(0)-\partial\varphi_p(0))}
  $$
  $$
    d(p)=-\frac{i}{(\sqrt{-ip}+ik)(\sqrt{-ip}\varphi_p(0)-\partial\varphi_p(0))}.
  $$
\end{itemize}
\vfill
\eject

\title{Poles in Laplace plane}
\vfill
\hfil\includegraphics[height=5.5cm]{contour.pdf}
\vfill
\eject

\title{Asymptotic behavior}
\begin{itemize}
  \item As $t\to\infty$:
  $$
    \psi(x,t)
    =\psi_{\mathrm{FN}}(x,t)+\left(\frac{t}{\tau_E(x)}\right)^{-\frac32}+O(t^{-\frac52})
    .
  $$

  \item If $k<0$ (reflected wave), then there is no pole on the imaginary axis, so there is no contribution as $t\to\infty$.
  \item Similarly, the transmitted wave in the initial condition does not contribute.
\end{itemize}
\vfill
\eject

\title{Idea of the proof: photoemission}
\begin{itemize}
  \item In Laplace space:
  $$
    \hat\Psi_p(x):=\int_0^\infty dt\ e^{-pt}\Psi(x,t)
  $$
  the equation is discrete:
  $$
    \mathfrak f_n^{(\sigma)}(x):=\hat\Psi_{-ik^2-i\sigma-in\omega}(x)
    ,\quad
    \mathcal Re(\sigma)\in[{\textstyle-\frac\omega 2,\frac\omega 2})
  $$
  $$
    \begin{array}{r}
      \left(-\Delta-k^2-\sigma-n\omega+\Theta(x)\left(U+2\epsilon^2\right)\right)\mathfrak f_n^{(\sigma)}(x)
      -\Theta(x)2\epsilon\nabla(\mathfrak f_{n+1}^{(\sigma)}(x)-\mathfrak f_{n-1}^{(\sigma)}(x))
      \\[0.5cm]
      -\Theta(x)\epsilon^2(\mathfrak f_{n+2}^{(\sigma)}(x)+\mathfrak f_{n-2}^{(\sigma)}(x))
      =-i\psi(x,0)
    \end{array}
  $$
\end{itemize}
\vfill
\eject

\title{Initial value problem}
\begin{itemize}
  \item This system of ODEs is {\it integrable} for $x<0$ and $x>0$, so we have closed form expressions for a family of solutions $\mathfrak f_n^{(\sigma)}(x)$, parametrized by two sequences $c_n^{(\sigma)}$ and $d_n^{(\sigma)}$:
  $$
    \mathfrak f_n^{(\sigma)}(x)=
    \left\{\begin{array}{>\displaystyle ll}
      c_n^{(\sigma)}e^{-ix\sqrt{k^2+\sigma+n\omega}}+\frac{ie^{ikx}}{\sigma+n\omega}
      &,\ x<0
      \\[0.5cm]
      \frac\omega{2\pi}\sum_{m\in\mathbb Z}
      d_m^{(\sigma)}e^{-\kappa_m^{(\sigma)}x}\int_0^{\frac{2\pi}\omega}dt\ e^{-i(n-m)\omega t}e^{\frac{i\epsilon^2}\omega\sin(2\omega t)+\kappa_m^{(\sigma)}\frac{4\epsilon}\omega\cos(\omega t)}
      &,\ x>0
    \end{array}\right.
  $$
  with
  $$
    \kappa_m^{(\sigma)}:=\sqrt{U+2\epsilon^2-k^2-\sigma-m\omega}
  $$
\end{itemize}
\vfill
\eject

\title{Initial value problem}
\begin{itemize}
  \item The sequences $c_n$ and $d_n$ are determined by the continuity condition at $x=0$:
  $$
    \sum_{m\in\mathbb Z}G_{n,m}^{(\sigma)}d_m^{(\sigma)}=v_n^{(\sigma)}
    ,\quad
    c_n^{(\sigma)}=\sum_{m\in\mathbb Z}H_{n,m}^{(\sigma)}d_m^{(\sigma)}+w_n^{(\sigma)}
    .
  $$
  \item The long-time behavior of $\Psi$ depends on the singularities of $\hat\Psi_p$ with $p\in i\mathbb R$.
  \item Can prove (by solving the equation for $\psi(x,t)$ using a Fourier transform in $x$) that the Schr\"odinger equation has a unique solution. This implies that $G^{(\sigma)}$ is invertible for imaginary $\sigma$.
  \item Only singularities on imaginary axis: $-ik^2+i\omega\mathbb Z$.
\end{itemize}
\vfill
\eject

\end{document}