Ian Jauslin
summaryrefslogtreecommitdiff
blob: 13099f9e4b0e71aa7b802ad0844724af4f939f9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
\documentclass{ian-presentation}

\usepackage[hidelinks]{hyperref}
\usepackage{graphicx}
\usepackage{dsfont}

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf\Large
\hfil High density phases\par
\smallskip
\hfil of hard-core lattice particle systems\par
\vfil
\large
\hfil Ian Jauslin
\normalsize
\vfil
\hfil\rm joint with {\bf Joel L. Lebowitz} and {\bf Elliott H. Lieb}\par
\vfil
arXiv: \vbox{
  \hbox{\tt \href{http://arxiv.org/abs/1708.01912}{1708.01912}}
  \hbox{\tt \href{http://arxiv.org/abs/1709.05297}{1709.05297}}
}
\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
\eject

\setcounter{page}1
\pagestyle{plain}

\title{Gas-liquid-crystal}
\vfill
\hfil
\includegraphics[width=3cm]{gas.png}
\includegraphics[width=3cm]{liquid.png}
\includegraphics[width=3cm]{crystal.png}
\vfill
\eject

\title{Hard-core lattice particle (HCLP) systems}
\vfill
\hfil\includegraphics[width=1.2cm]{diamond.pdf}
\hfil\includegraphics[width=1.2cm]{cross.pdf}
\hfil\includegraphics[width=1.2cm]{hexagon.pdf}
\par
\vfill
\hfil\includegraphics[width=0.9cm]{V_triomino.pdf}
\hfil\includegraphics[width=0.9cm]{T_tetromino.pdf}
\hfil\includegraphics[width=0.9cm]{L_tetromino.pdf}
\hfil\includegraphics[width=0.9cm]{P_pentomino.pdf}
\vfill
\eject

\title{Non-sliding HCLPs}
\begin{itemize}
  \item There exist a {\bf finite} number $\tau$ of tilings which are \penalty-1000{\bf periodic} and {\bf isometric} to each other.
\end{itemize}
\hfil\includegraphics[width=4cm]{cross_packing_l.pdf}
\hfil\includegraphics[width=4cm]{cross_packing_r.pdf}
\vfill
\eject

\title{Non-sliding HCLPs}
\begin{itemize}
  \item Defects are {\bf localized}: for every connected particle configuration $X$ that is {\it not} the subset of a close packing and every $Y\supset X$, there is empty space in $Y$ neighboring $X$.
\end{itemize}
\vfill
\hfil\includegraphics[width=2.1cm]{cross_sliding_2.pdf}
\hfil\includegraphics[width=2.1cm]{cross_sliding_3a.pdf}
\hfil\includegraphics[width=2.4cm]{cross_sliding_3b.pdf}
\vfill
\eject

\title{Observables}
\begin{itemize}
  \item Gibbs measure:
  $$
    \left<A\right>_{\nu}
    :=
    \lim_{\Lambda\to\Lambda_\infty}
    \frac1{\Xi_{\Lambda,\nu}(z)}
    \sum_{X\subset\Lambda}A(X)z^{|X|}\mathfrak B_\nu(X)\prod_{x\neq x'\in X}\varphi(x,x')
  $$
  \vskip-10pt
  \begin{itemize}
    \item $\Lambda$: finite subset of lattice $\Lambda_\infty$.
    \item $z\geqslant 0$: fugacity.
    \item $\varphi(x,x')$: hard-core interaction.
    \item $\mathfrak B_\nu$: boundary condition: favors the $\nu$-th tiling.
  \end{itemize}
  \vskip-5pt

  \item Pressure:
  \vskip-10pt
  $$
    p(z):=\lim_{\Lambda\to\Lambda_\infty}\frac1{|\Lambda|}\log\Xi_{\Lambda,\nu}(z).
  $$
\end{itemize}
\vfill\eject

\title{Theorem}
\begin{itemize}
  \item $p(z)-\rho_m\log z$ and $\left<\mathds 1_{x_1}\cdots\mathds 1_{x_n}\right>_\nu$ are {\bf analytic} functions of $1/z$ for large values of $z$.
  \vfill

  \item There are $\tau$ distinct Gibbs states:
  $$
  \left<\mathds 1_x\right>_\nu=
  \left\{\begin{array}{ll}
    1+O(y)&\mathrm{\ if\ }x\in\mathcal L_\nu\\[0.3cm]
    O(y)&\mathrm{\ if\ not}
    .
  \end{array}\right.
  $$
\end{itemize}
\vfill
\eject

\title{High-fugacity expansion}
$$
  p(y)=-\rho_m\log y+\sum_{k=1}^\infty c_k y^k
$$
\begin{itemize}
  \item \href{http://dx.doi.org/10.1063/1.1697217}{[Gaunt, Fisher, 1965]}: diamonds: for $k\leqslant 9$.
  \item \href{http://dx.doi.org/10.1098/rsta.1988.0077}{[Joyce, 1988]}: hexagons (integrable, \href{http://dx.doi.org/10.1088/0305-4470/13/3/007}{[Baxter, 1980]}).
  \item \href{http://dx.doi.org/10.1209/epl/i2005-10166-3}{[Eisenberg, Baram, 2005]}: crosses: for $k\leqslant 6$.
  \item For sliding models, the high-fugacity expansion is ill-defined.
\end{itemize}
\vfill
\eject

\title{Liquid crystals}
\begin{itemize}
  \item Orientational order and positional disorder.
\end{itemize}
\hfil\includegraphics[width=4.5cm]{nematic.png}
\hfil\includegraphics[width=4.5cm]{chiral.png}
\vfill
\eject

\title{Heilmann-Lieb model}
\hfil\href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]}
\vfil
\hfil\includegraphics[width=5cm]{interaction.pdf}
\vfil\eject

\title{Heilmann-Lieb model}
\begin{itemize}
  \item Gibbs measure:
  $$
    \left<A\right>_{\mathrm v}
    :=
    \lim_{\Lambda\to\mathbb Z^2}
    \frac1{\Xi_{\Lambda,\mathrm v}(z)}
    \sum_{\underline\delta\in\Omega_{\mathrm v}(\Lambda)}A(\underline\delta)z^{|\underline\delta|}\prod_{\delta\neq \delta'\in \underline\delta}e^{\frac12J\mathds 1_{\delta\sim\delta'}}
  $$
  \vskip-15pt
  \begin{itemize}
    \item $\Lambda$: finite box.
    \item $\Omega_{\mathrm v}(\Lambda)$: non-overlapping dimer configurations satisfying the boundary condition.
    \item $z\geqslant 0$: fugacity.
    \item $J\geqslant 0$: interaction strength.
    \item $\mathds 1_{\delta\sim\delta'}$ indicator that dimers are adjacent and aligned.
  \end{itemize}
\end{itemize}
\vfill
\eject

\title{Heilmann-Lieb conjecture}
\begin{itemize}
  \item \href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]}: proved orientational order using reflection positivity.
  \item HL Conjecture: absence of positional order.
  \item \href{http://dx.doi.org/10.1007/s10955-005-8085-8}{[Ioffe, Velenik, Zahradn\'\i k, 2006]}, \href{http://dx.doi.org/10.1007/s00220-013-1767-1}{[Disertori, Giuliani, 2013]}: nematic liquid crystal phase in systems of hard rods on $\mathbb Z^2$.
  \item \href{http://dx.doi.org/10.1007/s10955-015-1421-8}{[Alberici, 2016]}: different fugacities for horizontal and vertical dimers.
  \item \href{http://dx.doi.org/10.1103/PhysRevB.89.035128}{[Papanikolaou, Charrier, Fradkin, 2014]}: numerics.
\end{itemize}
\vfill
\eject

\title{Theorem}
For $1\ll z\ll J$, $\|(x,y)\|_{\mathrm{HL}}:=J|x|+e^{-\frac32J}z^{-\frac12}|y|$,
\begin{itemize}
  \item Given two vertical edges $e_{\mathrm v},f_{\mathrm v}$, $\left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v}$ is {\it independent} of $e_{\mathrm v}$ and
  $$
    \begin{array}{c}
      \left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v}=\frac12(1+O(e^{-\frac12J}z^{-\frac12}))
      \\[0.3cm]
      \left<\mathds 1_{e_{\mathrm v}}\mathds 1_{f_{\mathrm v}}\right>_{\mathrm v}
      -\left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v}
      \left<\mathds 1_{f_{\mathrm v}}\right>_{\mathrm v}
      =O(e^{-c\ \mathrm{dist}_{\mathrm{HL}}(e_{\mathrm v},f_{\mathrm v})})
    \end{array}
  $$
  \vskip-5pt
  \item Given two horizontal edges $e_{\mathrm h},f_{\mathrm h}$, $\left<\mathds 1_{e_{\mathrm h}}\right>_{\mathrm v}$ is {\it independent} of $e_{\mathrm h}$ and
  $$
    \begin{array}{c}
      \left<\mathds 1_{e_{\mathrm h}}\right>_{\mathrm v}=O(e^{-3J})
      \\[0.3cm]
      \left<\mathds 1_{e_{\mathrm h}}\mathds 1_{f_{\mathrm v}}\right>_{\mathrm v}
      -\left<\mathds 1_{e_{\mathrm h}}\right>_{\mathrm v}
      \left<\mathds 1_{f_{\mathrm h}}\right>_{\mathrm v}
      =O(e^{-3J-c\ \mathrm{dist}_{\mathrm{HL}}(e_{\mathrm v},f_{\mathrm v})})
    \end{array}
  $$
\end{itemize}

\end{document}