\documentclass{ian-presentation} \usepackage[hidelinks]{hyperref} \usepackage{graphicx} \usepackage{dsfont} \begin{document} \pagestyle{empty} \hbox{}\vfil \bf\Large \hfil High density phases\par \smallskip \hfil of hard-core lattice particle systems\par \vfil \large \hfil Ian Jauslin \normalsize \vfil \hfil\rm joint with {\bf Joel L. Lebowitz} and {\bf Elliott H. Lieb}\par \vfil arXiv: \vbox{ \hbox{\tt \href{http://arxiv.org/abs/1708.01912}{1708.01912}} \hbox{\tt \href{http://arxiv.org/abs/1709.05297}{1709.05297}} } \hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} \eject \setcounter{page}1 \pagestyle{plain} \title{Gas-liquid-crystal} \vfill \hfil \includegraphics[width=3cm]{gas.png} \includegraphics[width=3cm]{liquid.png} \includegraphics[width=3cm]{crystal.png} \vfill \eject \title{Hard-core lattice particle (HCLP) systems} \vfill \hfil\includegraphics[width=1.2cm]{diamond.pdf} \hfil\includegraphics[width=1.2cm]{cross.pdf} \hfil\includegraphics[width=1.2cm]{hexagon.pdf} \par \vfill \hfil\includegraphics[width=0.9cm]{V_triomino.pdf} \hfil\includegraphics[width=0.9cm]{T_tetromino.pdf} \hfil\includegraphics[width=0.9cm]{L_tetromino.pdf} \hfil\includegraphics[width=0.9cm]{P_pentomino.pdf} \vfill \eject \title{Non-sliding HCLPs} \begin{itemize} \item There exist a {\bf finite} number $\tau$ of tilings which are \penalty-1000{\bf periodic} and {\bf isometric} to each other. \end{itemize} \hfil\includegraphics[width=4cm]{cross_packing_l.pdf} \hfil\includegraphics[width=4cm]{cross_packing_r.pdf} \vfill \eject \title{Non-sliding HCLPs} \begin{itemize} \item Defects are {\bf localized}: for every connected particle configuration $X$ that is {\it not} the subset of a close packing and every $Y\supset X$, there is empty space in $Y$ neighboring $X$. \end{itemize} \vfill \hfil\includegraphics[width=2.1cm]{cross_sliding_2.pdf} \hfil\includegraphics[width=2.1cm]{cross_sliding_3a.pdf} \hfil\includegraphics[width=2.4cm]{cross_sliding_3b.pdf} \vfill \eject \title{Observables} \begin{itemize} \item Gibbs measure: $$ \left_{\nu} := \lim_{\Lambda\to\Lambda_\infty} \frac1{\Xi_{\Lambda,\nu}(z)} \sum_{X\subset\Lambda}A(X)z^{|X|}\mathfrak B_\nu(X)\prod_{x\neq x'\in X}\varphi(x,x') $$ \vskip-10pt \begin{itemize} \item $\Lambda$: finite subset of lattice $\Lambda_\infty$. \item $z\geqslant 0$: fugacity. \item $\varphi(x,x')$: hard-core interaction. \item $\mathfrak B_\nu$: boundary condition: favors the $\nu$-th tiling. \end{itemize} \vskip-5pt \item Pressure: \vskip-10pt $$ p(z):=\lim_{\Lambda\to\Lambda_\infty}\frac1{|\Lambda|}\log\Xi_{\Lambda,\nu}(z). $$ \end{itemize} \vfill\eject \title{Theorem} \begin{itemize} \item $p(z)-\rho_m\log z$ and $\left<\mathds 1_{x_1}\cdots\mathds 1_{x_n}\right>_\nu$ are {\bf analytic} functions of $1/z$ for large values of $z$. \vfill \item There are $\tau$ distinct Gibbs states: $$ \left<\mathds 1_x\right>_\nu= \left\{\begin{array}{ll} 1+O(y)&\mathrm{\ if\ }x\in\mathcal L_\nu\\[0.3cm] O(y)&\mathrm{\ if\ not} . \end{array}\right. $$ \end{itemize} \vfill \eject \title{High-fugacity expansion} $$ p(y)=-\rho_m\log y+\sum_{k=1}^\infty c_k y^k $$ \begin{itemize} \item \href{http://dx.doi.org/10.1063/1.1697217}{[Gaunt, Fisher, 1965]}: diamonds: for $k\leqslant 9$. \item \href{http://dx.doi.org/10.1098/rsta.1988.0077}{[Joyce, 1988]}: hexagons (integrable, \href{http://dx.doi.org/10.1088/0305-4470/13/3/007}{[Baxter, 1980]}). \item \href{http://dx.doi.org/10.1209/epl/i2005-10166-3}{[Eisenberg, Baram, 2005]}: crosses: for $k\leqslant 6$. \item For sliding models, the high-fugacity expansion is ill-defined. \end{itemize} \vfill \eject \title{Liquid crystals} \begin{itemize} \item Orientational order and positional disorder. \end{itemize} \hfil\includegraphics[width=4.5cm]{nematic.png} \hfil\includegraphics[width=4.5cm]{chiral.png} \vfill \eject \title{Heilmann-Lieb model} \hfil\href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]} \vfil \hfil\includegraphics[width=5cm]{interaction.pdf} \vfil\eject \title{Heilmann-Lieb model} \begin{itemize} \item Gibbs measure: $$ \left_{\mathrm v} := \lim_{\Lambda\to\mathbb Z^2} \frac1{\Xi_{\Lambda,\mathrm v}(z)} \sum_{\underline\delta\in\Omega_{\mathrm v}(\Lambda)}A(\underline\delta)z^{|\underline\delta|}\prod_{\delta\neq \delta'\in \underline\delta}e^{\frac12J\mathds 1_{\delta\sim\delta'}} $$ \vskip-15pt \begin{itemize} \item $\Lambda$: finite box. \item $\Omega_{\mathrm v}(\Lambda)$: non-overlapping dimer configurations satisfying the boundary condition. \item $z\geqslant 0$: fugacity. \item $J\geqslant 0$: interaction strength. \item $\mathds 1_{\delta\sim\delta'}$ indicator that dimers are adjacent and aligned. \end{itemize} \end{itemize} \vfill \eject \title{Heilmann-Lieb conjecture} \begin{itemize} \item \href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]}: proved orientational order using reflection positivity. \item HL Conjecture: absence of positional order. \item \href{http://dx.doi.org/10.1007/s10955-005-8085-8}{[Ioffe, Velenik, Zahradn\'\i k, 2006]}, \href{http://dx.doi.org/10.1007/s00220-013-1767-1}{[Disertori, Giuliani, 2013]}: nematic liquid crystal phase in systems of hard rods on $\mathbb Z^2$. \item \href{http://dx.doi.org/10.1007/s10955-015-1421-8}{[Alberici, 2016]}: different fugacities for horizontal and vertical dimers. \item \href{http://dx.doi.org/10.1103/PhysRevB.89.035128}{[Papanikolaou, Charrier, Fradkin, 2014]}: numerics. \end{itemize} \vfill \eject \title{Theorem} For $1\ll z\ll J$, $\|(x,y)\|_{\mathrm{HL}}:=J|x|+e^{-\frac32J}z^{-\frac12}|y|$, \begin{itemize} \item Given two vertical edges $e_{\mathrm v},f_{\mathrm v}$, $\left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v}$ is {\it independent} of $e_{\mathrm v}$ and $$ \begin{array}{c} \left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v}=\frac12(1+O(e^{-\frac12J}z^{-\frac12})) \\[0.3cm] \left<\mathds 1_{e_{\mathrm v}}\mathds 1_{f_{\mathrm v}}\right>_{\mathrm v} -\left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v} \left<\mathds 1_{f_{\mathrm v}}\right>_{\mathrm v} =O(e^{-c\ \mathrm{dist}_{\mathrm{HL}}(e_{\mathrm v},f_{\mathrm v})}) \end{array} $$ \vskip-5pt \item Given two horizontal edges $e_{\mathrm h},f_{\mathrm h}$, $\left<\mathds 1_{e_{\mathrm h}}\right>_{\mathrm v}$ is {\it independent} of $e_{\mathrm h}$ and $$ \begin{array}{c} \left<\mathds 1_{e_{\mathrm h}}\right>_{\mathrm v}=O(e^{-3J}) \\[0.3cm] \left<\mathds 1_{e_{\mathrm h}}\mathds 1_{f_{\mathrm v}}\right>_{\mathrm v} -\left<\mathds 1_{e_{\mathrm h}}\right>_{\mathrm v} \left<\mathds 1_{f_{\mathrm h}}\right>_{\mathrm v} =O(e^{-3J-c\ \mathrm{dist}_{\mathrm{HL}}(e_{\mathrm v},f_{\mathrm v})}) \end{array} $$ \end{itemize} \end{document}