diff options
| author | Ian Jauslin <ian.jauslin@rutgers.edu> | 2023-02-26 18:36:05 -0500 | 
|---|---|---|
| committer | Ian Jauslin <ian.jauslin@rutgers.edu> | 2023-02-26 18:36:05 -0500 | 
| commit | c1b477a1b2b796617c4e345a7296a8d429d7a067 (patch) | |
| tree | 8a8a2fc0fb6e7da5f4b0b271382740f858ee4372 /src | |
| parent | e72af82c3ed16b81cdb5043c58abbdbb3cf02102 (diff) | |
Update to v0.4v0.4
  feature: compute the 2-point correlation function in easyeq.
  feature: compute the Fourier transform of the 2-point correlation function
           in anyeq and easyeq.
  feature: compute the local maximum of the 2-point correlation function and
           its Fourier transform.
  feature: compute the compressibility for anyeq.
  feature: allow for linear spacing of rho's.
  feature: print the scattering length.
  change: ux and uk now return real numbers.
  fix: error in the computation of the momentum distribution: wrong
       definition of delta functions.
  fix: various minor bugs.
  optimization: assign explicit types to variables.
Diffstat (limited to 'src')
| -rw-r--r-- | src/anyeq.jl | 1483 | ||||
| -rw-r--r-- | src/chebyshev.jl | 323 | ||||
| -rw-r--r-- | src/easyeq.jl | 1036 | ||||
| -rw-r--r-- | src/integration.jl | 50 | ||||
| -rw-r--r-- | src/interpolation.jl | 36 | ||||
| -rw-r--r-- | src/main.jl | 168 | ||||
| -rw-r--r-- | src/multithread.jl | 16 | ||||
| -rw-r--r-- | src/optimization.jl | 94 | ||||
| -rw-r--r-- | src/potentials.jl | 58 | ||||
| -rw-r--r-- | src/print.jl | 2 | ||||
| -rw-r--r-- | src/simpleq-Kv.jl | 68 | ||||
| -rw-r--r-- | src/simpleq-hardcore.jl | 486 | ||||
| -rw-r--r-- | src/simpleq-iteration.jl | 49 | ||||
| -rw-r--r-- | src/tools.jl | 22 | 
14 files changed, 3195 insertions, 696 deletions
| diff --git a/src/anyeq.jl b/src/anyeq.jl index 8459cb0..fee77d8 100644 --- a/src/anyeq.jl +++ b/src/anyeq.jl @@ -1,4 +1,4 @@ -## Copyright 2021 Ian Jauslin +## Copyright 2021-2023 Ian Jauslin  ##   ## Licensed under the Apache License, Version 2.0 (the "License");  ## you may not use this file except in compliance with the License. @@ -28,24 +28,26 @@  end  # compute energy for a given rho -# use minlrho, nlrho to incrementally compute the solution to medeq (to initialize the Newton algorithm) -function anyeq_energy(rho,minlrho,nlrho,taus,P,N,J,a0,v,maxiter,tolerance,approx,savefile) +function anyeq_energy( +  rho::Float64, +  minlrho_init::Float64, +  nlrho_init::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Anyeq_approx, +  savefile::String +)    # initialize vectors -  (weights,T,k,V,V0,A,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v) -  # init Abar -  if savefile!="" -    Abar=anyeq_read_Abar(savefile,P,N,J) -  else -    Abar=anyeq_Abar_multithread(k,weights,taus,T,P,N,J,approx) -  end +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile)    # compute initial guess from medeq -  rhos=Array{Float64}(undef,nlrho) -  for j in 0:nlrho-1 -    rhos[j+1]=(nlrho==1 ? rho : 10^(minlrho+(log10(rho)-minlrho)/(nlrho-1)*j)) -  end -  u0s=anyeq_init_medeq(rhos,N,J,k,a0,v,maxiter,tolerance) -  u0=u0s[nlrho] +  u0=anyeq_init_medeq([rho],minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance)    (u,E,error)=anyeq_hatu(u0,P,N,J,rho,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx) @@ -53,72 +55,60 @@ function anyeq_energy(rho,minlrho,nlrho,taus,P,N,J,a0,v,maxiter,tolerance,approx  end  # compute energy as a function of rho -function anyeq_energy_rho(rhos,taus,P,N,J,a0,v,maxiter,tolerance,approx,savefile) +function anyeq_energy_rho( +  rhos::Array{Float64,1}, +  minlrho_init::Float64, +  nlrho_init::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Anyeq_approx, +  savefile::String +)    # initialize vectors -  (weights,T,k,V,V0,A,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v) - -  # init Abar -  if savefile!="" -    Abar=anyeq_read_Abar(savefile,P,N,J) -  else -    Abar=anyeq_Abar_multithread(k,weights,taus,T,P,N,J,approx) -  end +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile)    # compute initial guess from medeq -  u0s=anyeq_init_medeq(rhos,N,J,k,a0,v,maxiter,tolerance) - -  # save result from each task -  es=Array{Float64,1}(undef,length(rhos)) -  err=Array{Float64,1}(undef,length(rhos)) +  u0s=anyeq_init_medeq(rhos,minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance) -  ## spawn workers -  # number of workers -  nw=nworkers() -  # split jobs among workers -  work=Array{Array{Int64,1},1}(undef,nw) -  # init empty arrays -  for p in 1:nw -    work[p]=zeros(0) -  end -  for j in 1:length(rhos) -    append!(work[(j-1)%nw+1],j) -  end +  # spawn workers +  work=spawn_workers(length(rhos)) -  count=0 -  # for each worker -  @sync for p in 1:nw -    # for each task -    @async for j in work[p] -      count=count+1 -      if count>=nw -        progress(count,length(rhos),10000) -      end -      # run the task -      (u,es[j],err[j])=remotecall_fetch(anyeq_hatu,workers()[p],u0s[j],P,N,J,rhos[j],a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx) -    end -  end +  # compute u +  (us,es,errs)=anyeq_hatu_rho_multithread(u0s,P,N,J,rhos,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx,work)    for j in 1:length(rhos) -    @printf("% .15e % .15e % .15e\n",rhos[j],es[j],err[j]) +    @printf("% .15e % .15e % .15e\n",rhos[j],es[j],errs[j])    end  end  # compute energy as a function of rho  # initialize with previous rho -function anyeq_energy_rho_init_prevrho(rhos,taus,P,N,J,a0,v,maxiter,tolerance,approx,savefile) +function anyeq_energy_rho_init_prevrho( +  rhos::Array{Float64,1}, +  minlrho_init::Float64, +  nlrho_init::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Anyeq_approx, +  savefile::String +)    # initialize vectors -  (weights,T,k,V,V0,A,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v) - -  # init Abar -  if savefile!="" -    Abar=anyeq_read_Abar(savefile,P,N,J) -  else -    Abar=anyeq_Abar_multithread(k,weights,taus,T,P,N,J,approx) -  end +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile)    # compute initial guess from medeq -  u0s=anyeq_init_medeq([rhos[1]],N,J,k,a0,v,maxiter,tolerance) -  u=u0s[1] +  u=anyeq_init_medeq([rhos[1]],minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance)    for j in 1:length(rhos)      progress(j,length(rhos),10000) @@ -134,20 +124,26 @@ function anyeq_energy_rho_init_prevrho(rhos,taus,P,N,J,a0,v,maxiter,tolerance,ap  end  # compute energy as a function of rho  # initialize with next rho -function anyeq_energy_rho_init_nextrho(rhos,taus,P,N,J,a0,v,maxiter,tolerance,approx,savefile) +function anyeq_energy_rho_init_nextrho( +  rhos::Array{Float64,1}, +  minlrho_init::Float64, +  nlrho_init::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Anyeq_approx, +  savefile::String +)    # initialize vectors -  (weights,T,k,V,V0,A,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v) - -  # init Abar -  if savefile!="" -    Abar=anyeq_read_Abar(savefile,P,N,J) -  else -    Abar=anyeq_Abar_multithread(k,weights,taus,T,P,N,J,approx) -  end +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile)    # compute initial guess from medeq -  u0s=anyeq_init_medeq([rhos[length(rhos)]],N,J,k,a0,v,maxiter,tolerance) -  u=u0s[1] +  u=anyeq_init_medeq([rhos[length(rhos)]],minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance)    for j in 1:length(rhos)      progress(j,length(rhos),10000) @@ -163,23 +159,26 @@ function anyeq_energy_rho_init_nextrho(rhos,taus,P,N,J,a0,v,maxiter,tolerance,ap  end  # compute u(k) -# use minlrho, nlrho to incrementally compute the solution to medeq (to initialize the Newton algorithm) -function anyeq_uk(minlrho,nlrho,taus,P,N,J,rho,a0,v,maxiter,tolerance,approx,savefile) +function anyeq_uk( +  minlrho_init::Float64, +  nlrho_init::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Anyeq_approx, +  savefile::String +)    # init vectors -  (weights,T,k,V,V0,A,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v) -  # init Abar -  if savefile!="" -    Abar=anyeq_read_Abar(savefile,P,N,J) -  else -    Abar=anyeq_Abar_multithread(k,weights,taus,T,P,N,J,approx) -  end +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile) +    # compute initial guess from medeq -  rhos=Array{Float64}(undef,nlrho) -  for j in 0:nlrho-1 -    rhos[j+1]=(nlrho==1 ? rho : 10^(minlrho+(log10(rho)-minlrho)/(nlrho-1)*j)) -  end -  u0s=anyeq_init_medeq(rhos,N,J,k,a0,v,maxiter,tolerance) -  u0=u0s[nlrho] +  u0=anyeq_init_medeq([rho],minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance)    (u,E,error)=anyeq_hatu(u0,P,N,J,rho,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx) @@ -192,58 +191,60 @@ function anyeq_uk(minlrho,nlrho,taus,P,N,J,rho,a0,v,maxiter,tolerance,approx,sav  end  # compute u(x) -# use minlrho, nlrho to incrementally compute the solution to medeq (to initialize the Newton algorithm) -function anyeq_ux(minlrho,nlrho,taus,P,N,J,rho,a0,v,maxiter,tolerance,xmin,xmax,nx,approx,savefile) +function anyeq_ux( +  minlrho_init::Float64, +  nlrho_init::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  xmin::Float64, +  xmax::Float64, +  nx::Int64, +  approx::Anyeq_approx, +  savefile::String +)    # init vectors -  (weights,T,k,V,V0,A,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v) -  # init Abar -  if savefile!="" -    Abar=anyeq_read_Abar(savefile,P,N,J) -  else -    Abar=anyeq_Abar_multithread(k,weights,taus,T,P,N,J,approx) -  end +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile)    # compute initial guess from medeq -  rhos=Array{Float64}(undef,nlrho) -  for j in 0:nlrho-1 -    rhos[j+1]=(nlrho==1 ? rho : 10^(minlrho+(log10(rho)-minlrho)/(nlrho-1)*j)) -  end -  u0s=anyeq_init_medeq(rhos,N,J,k,a0,v,maxiter,tolerance) -  u0=u0s[nlrho] +  u0=anyeq_init_medeq([rho],minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance)    (u,E,error)=anyeq_hatu(u0,P,N,J,rho,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx)    for i in 1:nx      x=xmin+(xmax-xmin)*i/nx -    ux=0. -    for zeta in 0:J-1 -      for j in 1:N -	ux+=(taus[zeta+2]-taus[zeta+1])/(16*pi*x)*weights[2][j]*cos(pi*weights[1][j]/2)*(1+k[zeta*N+j])^2*k[zeta*N+j]*u[zeta*N+j]*sin(k[zeta*N+j]*x) -      end -    end -    @printf("% .15e % .15e % .15e\n",x,real(ux),imag(ux)) +    ux=anyeq_u_x(x,u,k,N,J,taus,weights) +    @printf("% .15e % .15e % .15e\n",x,ux,)    end  end  # compute condensate fraction for a given rho -# use minlrho, nlrho to incrementally compute the solution to medeq (to initialize the Newton algorithm) -function anyeq_condensate_fraction(rho,minlrho,nlrho,taus,P,N,J,a0,v,maxiter,tolerance,approx,savefile) +function anyeq_condensate_fraction( +  rho::Float64, +  minlrho_init::Float64, +  nlrho_init::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Anyeq_approx, +  savefile::String +)    # initialize vectors -  (weights,T,k,V,V0,A,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v) -  # init Abar -  if savefile!="" -    Abar=anyeq_read_Abar(savefile,P,N,J) -  else -    Abar=anyeq_Abar_multithread(k,weights,taus,T,P,N,J,approx) -  end +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile)    # compute initial guess from medeq -  rhos=Array{Float64}(undef,nlrho) -  for j in 0:nlrho-1 -    rhos[j+1]=(nlrho==1 ? rho : 10^(minlrho+(log10(rho)-minlrho)/(nlrho-1)*j)) -  end -  u0s=anyeq_init_medeq(rhos,N,J,k,a0,v,maxiter,tolerance) -  u0=u0s[nlrho] +  u0=anyeq_init_medeq([rho],minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance)    (u,E,error)=anyeq_hatu(u0,P,N,J,rho,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx) @@ -254,161 +255,571 @@ function anyeq_condensate_fraction(rho,minlrho,nlrho,taus,P,N,J,a0,v,maxiter,tol  end  # condensate fraction as a function of rho -function anyeq_condensate_fraction_rho(rhos,taus,P,N,J,a0,v,maxiter,tolerance,approx,savefile) -  ## spawn workers -  # number of workers -  nw=nworkers() -  # split jobs among workers -  work=Array{Array{Int64,1},1}(undef,nw) -  # init empty arrays -  for p in 1:nw -    work[p]=zeros(0) +function anyeq_condensate_fraction_rho( +  rhos::Array{Float64,1}, +  minlrho_init::Float64, +  nlrho_init::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Anyeq_approx, +  savefile::String +) +  # spawn workers +  work=spawn_workers(length(rhos)) + +  # initialize vectors +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile) + +  # compute initial guess from medeq +  u0s=anyeq_init_medeq(rhos,minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance) + +  # compute u +  (us,es,errs)=anyeq_hatu_rho_multithread(u0s,P,N,J,rhos,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx,work) + +  # compute eta +  etas=Array{Float64,1}(undef,length(rhos)) +  count=0 +  # for each worker +  @sync for p in 1:length(work) +    # for each task +    @async for j in work[p] +      count=count+1 +      if count>=length(work) +	progress(count,length(rhos),10000) +      end +      # run the task +      etas[j]=remotecall_fetch(anyeq_eta,workers()[p],us[j],P,N,J,rhos[j],weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx) +    end    end +    for j in 1:length(rhos) -    append!(work[(j-1)%nw+1],j) +    @printf("% .15e % .15e % .15e\n",rhos[j],etas[j],errs[j])    end +end +# compute the momentum distribution for a given rho +function anyeq_momentum_distribution( +  kmin::Float64, +  kmax::Float64, +  rho::Float64, +  minlrho_init::Float64, +  nlrho_init::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  windowL::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Anyeq_approx, +  savefile::String +)    # initialize vectors -  (weights,T,k,V,V0,A,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v) -  # init Abar -  if savefile!="" -    Abar=anyeq_read_Abar(savefile,P,N,J) +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile) + +  # compute initial guess from medeq +  u0=anyeq_init_medeq([rho],minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance) + +  (u,E,error)=anyeq_hatu(u0,P,N,J,rho,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx) + +  # compute M +  if windowL==Inf +    # use discrete approximation of delta function +    M=anyeq_momentum_discrete_delta(kmin,kmax,u,P,N,J,rho,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx)    else -    Abar=anyeq_Abar_multithread(k,weights,taus,T,P,N,J,approx) +    M=anyeq_momentum_window(kmin,kmax,u,P,N,J,windowL,rho,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx)    end +  # order k's in increasing order +  for zeta in 0:J-1 +    for j in 1:N +      q=k[(J-1-zeta)*N+j] +      # drop if not in k interval +      if q<kmin || q>kmax +	continue +      end +      @printf("% .15e % .15e\n",q,M[(J-1-zeta)*N+j]) +    end +  end +end + +# 2 point correlation function +function anyeq_2pt_correlation( +  minlrho_init::Float64, +  nlrho_init::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  windowL::Float64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  xmin::Float64, +  xmax::Float64, +  nx::Int64, +  approx::Anyeq_approx, +  savefile::String +) +  # init vectors +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile) +    # compute initial guess from medeq -  u0s=anyeq_init_medeq(rhos,N,J,k,a0,v,maxiter,tolerance) +  u0=anyeq_init_medeq([rho],minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance) + +  # compute u and some useful integrals +  (u,E,error)=anyeq_hatu(u0,P,N,J,rho,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx) +  (S,E,II,JJ,X,Y,sL1,sK,G)=anyeq_SEIJGXY(rho*u,rho,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx) + +  for i in 1:nx +    x=xmin+(xmax-xmin)*i/nx +    C2=anyeq_2pt(x,u,P,N,J,windowL,rho,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx,S,E,II,JJ,X,Y,sL1,sK) +    @printf("% .15e % .15e\n",x,C2) +  end +end + +# maximum of 2 point correlation function +function anyeq_2pt_correlation_max( +  rho::Float64, +  minlrho_init::Float64, +  nlrho_init::Int64, +  dx::Float64, +  x0::Float64, # initial guess is x0/rho^(1/3) +  maxstep::Float64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  windowL::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  tolerance_max::Float64, +  approx::Anyeq_approx, +  savefile::String +) +  # init vectors +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile) + +  # compute initial guess from medeq +  u0=anyeq_init_medeq([rho],minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance) + +  # initial guess +  x0=1/rho^(1/3) + +  (u,E,error)=anyeq_hatu(u0,P,N,J,rho,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx) +  (x,f)=anyeq_2pt_max(u,P,N,J,x0/rho^(1/3),dx,maxstep,maxiter,tolerance_max,windowL,rho,weights,T,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx) + +  if(x==Inf) +    @printf(stderr,"max search failed for rho=%e\n",rho) +  else +    @printf("% .15e % .15e\n",x,f) +  end +end + +# maximum of 2 point correlation function as a function of rho +function anyeq_2pt_correlation_max_rho( +  rhos::Array{Float64,1}, +  minlrho_init::Float64, +  nlrho_init::Int64, +  dx::Float64, +  x0::Float64, # initial guess is x0/rho^(1/3) +  maxstep::Float64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  windowL::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  tolerance_max::Float64, +  approx::Anyeq_approx, +  savefile::String +) +  # init vectors +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile) + +  # compute initial guess from medeq +  u0s=anyeq_init_medeq(rhos,minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance) + +  # save result from each task +  xs=Array{Float64,1}(undef,length(rhos)) +  fs=Array{Float64,1}(undef,length(rhos)) + +  # spawn workers +  work=spawn_workers(length(rhos))    # compute u -  us=Array{Array{Float64,1}}(undef,length(rhos)) -  errs=Array{Float64,1}(undef,length(rhos)) +  (us,es,errs)=anyeq_hatu_rho_multithread(u0s,P,N,J,rhos,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx,work) +    count=0    # for each worker -  @sync for p in 1:nw +  @sync for p in 1:length(work)      # for each task      @async for j in work[p]        count=count+1 -      if count>=nw -	progress(count,length(rhos),10000) +      if count>=length(work) +        progress(count,length(rhos),10000)        end        # run the task -      (us[j],E,errs[j])=remotecall_fetch(anyeq_hatu,workers()[p],u0s[j],P,N,J,rhos[j],a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx) +      (xs[j],fs[j])=remotecall_fetch(anyeq_2pt_max,workers()[p],us[j],P,N,J,x0/rhos[j]^(1/3),dx,maxstep,maxiter,tolerance_max,windowL,rhos[j],weights,T,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx)      end    end -  # compute eta -  etas=Array{Float64}(undef,length(rhos)) +  for j in 1:length(rhos) +    if(xs[j]==Inf) +      @printf(stderr,"max search failed for rho=%e\n",rhos[j]) +    else +      @printf("% .15e % .15e % .15e\n",rhos[j],xs[j],fs[j]) +    end +  end +end + +# Correlation function in Fourier space +function anyeq_2pt_correlation_fourier( +  minlrho_init::Float64, +  nlrho_init::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  windowL::Float64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  kmin::Float64, +  kmax::Float64, +  nk::Int64, +  approx::Anyeq_approx, +  savefile::String +) +  # init vectors +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile) + +  # compute initial guess from medeq +  u0=anyeq_init_medeq([rho],minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance) + +  # compute u and some useful integrals +  (u,E,error)=anyeq_hatu(u0,P,N,J,rho,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx) +  (S,E,II,JJ,X,Y,sL1,sK,G)=anyeq_SEIJGXY(rho*u,rho,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx) + +  # save result from each task +  C2s=Array{Float64,1}(undef,nk) + +  # spawn workers +  work=spawn_workers(nk) +    count=0    # for each worker -  @sync for p in 1:nw +  @sync for p in 1:length(work)      # for each task      @async for j in work[p]        count=count+1 -      if count>=nw -	progress(count,length(rhos),10000) +      if count>=length(work) +        progress(count,nk,10000)        end        # run the task -      etas[j]=anyeq_eta(us[j],P,N,J,rhos[j],weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx) +      C2s[j]=remotecall_fetch(anyeq_2pt_fourier,workers()[p],kmin+(kmax-kmin)*j/nk,u,P,N,J,windowL,rho,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx,S,E,II,JJ,X,Y,sL1,sK)      end    end -  for j in 1:length(rhos) -    @printf("% .15e % .15e % .15e\n",rhos[j],etas[j],errs[j]) +  for j in 1:nk +    @printf("% .15e % .15e\n",kmin+(kmax-kmin)*j/nk,C2s[j])    end  end -# compute the momentum distribution for a given rho -# use minlrho, nlrho to incrementally compute the solution to medeq (to initialize the Newton algorithm) -function anyeq_momentum_distribution(rho,minlrho,nlrho,taus,P,N,J,a0,v,maxiter,tolerance,approx,savefile) -  # initialize vectors -  (weights,T,k,V,V0,A,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v) -  # init Abar -  if savefile!="" -    Abar=anyeq_read_Abar(savefile,P,N,J) +# maximum of Fourier transform of 2 point correlation function +function anyeq_2pt_correlation_fourier_max( +  rho::Float64, +  minlrho_init::Float64, +  nlrho_init::Int64, +  dk::Float64, +  k0::Float64, # initial guess is k0*rho^(1/3) +  maxstep::Float64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  windowL::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  tolerance_max::Float64, +  approx::Anyeq_approx, +  savefile::String +) +  # init vectors +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile) + +  # compute initial guess from medeq +  u0=anyeq_init_medeq([rho],minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance) + +  # compute u +  (u,E,error)=anyeq_hatu(u0,P,N,J,rho,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx) +  (ko,f)=anyeq_2pt_fourier_max(u,P,N,J,k0*rho^(1/3),dk,maxstep,maxiter,tolerance_max,windowL,rho,weights,T,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx) + +  if(ko==Inf) +    @printf(stderr,"max search failed for rho=%e\n",rho)    else -    Abar=anyeq_Abar_multithread(k,weights,taus,T,P,N,J,approx) +    @printf("% .15e % .15e\n",ko,f)    end +end + +# maximum of fourier transform of 2 point correlation function as a function of rho +function anyeq_2pt_correlation_fourier_max_rho( +  rhos::Array{Float64,1}, +  minlrho_init::Float64, +  nlrho_init::Int64, +  dk::Float64, +  k0::Float64, # initial guess is k0*rho^(1/3) +  maxstep::Float64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  windowL::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  tolerance_max::Float64, +  approx::Anyeq_approx, +  savefile::String +) +  # init vectors +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile)    # compute initial guess from medeq -  rhos=Array{Float64}(undef,nlrho) -  for j in 0:nlrho-1 -    rhos[j+1]=(nlrho==1 ? rho : 10^(minlrho+(log10(rho)-minlrho)/(nlrho-1)*j)) -  end -  u0s=anyeq_init_medeq(rhos,N,J,k,a0,v,maxiter,tolerance) -  u0=u0s[nlrho] +  u0s=anyeq_init_medeq(rhos,minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance) -  (u,E,error)=anyeq_hatu(u0,P,N,J,rho,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx) +  # spawn workers +  work=spawn_workers(length(rhos)) -  # compute M -  M=anyeq_momentum(u,P,N,J,rho,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx) +  # compute u +  (us,es,errs)=anyeq_hatu_rho_multithread(u0s,P,N,J,rhos,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx,work) -  for zeta in 0:J-1 -    for j in 1:N -      # order k's in increasing order -      @printf("% .15e % .15e\n",k[(J-1-zeta)*N+j],M[(J-1-zeta)*N+j]) +  # save result from each task +  ks=Array{Float64,1}(undef,length(rhos)) +  fs=Array{Float64,1}(undef,length(rhos)) + +  count=0 +  # for each worker +  @sync for p in 1:length(work) +    # for each task +    @async for j in work[p] +      count=count+1 +      if count>=length(work) +        progress(count,length(rhos),10000) +      end +      # run the task +      (ks[j],fs[j])=remotecall_fetch(anyeq_2pt_fourier_max,workers()[p],us[j],P,N,J,k0*rhos[j]^(1/3),dk,maxstep,maxiter,tolerance_max,windowL,rhos[j],weights,T,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx) +    end +  end + +  for j in 1:length(rhos) +    if(ks[j]==Inf) +      @printf(stderr,"max search failed for rho=%e\n",rhos[j]) +    else +      @printf("% .15e % .15e % .15e\n",rhos[j],ks[j],fs[j])      end    end  end -# 2 point correlation function -function anyeq_2pt_correlation(minlrho,nlrho,taus,P,N,J,windowL,rho,a0,v,maxiter,tolerance,xmin,xmax,nx,approx,savefile) +# uncondensed 2 point correlation function +function anyeq_uncondensed_2pt_correlation( +  minlrho_init::Float64, +  nlrho_init::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  windowL::Float64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  xmin::Float64, +  xmax::Float64, +  nx::Int64, +  approx::Anyeq_approx, +  savefile::String +)    # init vectors -  (weights,T,k,V,V0,A,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v) -  # init Abar -  if savefile!="" -    Abar=anyeq_read_Abar(savefile,P,N,J) -  else -    Abar=anyeq_Abar_multithread(k,weights,taus,T,P,N,J,approx) +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile) + +  # compute initial guess from medeq +  u0=anyeq_init_medeq([rho],minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance) + +  # compute u and some useful integrals +  (u,E,error)=anyeq_hatu(u0,P,N,J,rho,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx) +  (S,E,II,JJ,X,Y,sL1,sK,G)=anyeq_SEIJGXY(rho*u,rho,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx) + +  # compute u(xi) +  uxis=Array{Float64,1}(undef,nx) +  for i in 1:nx +    uxis[i]=anyeq_u_x(xmin+(xmax-xmin)*i/nx,u,k,N,J,taus,weights) +  end +     + +  # spawn workers +  work=spawn_workers(nx) +  gamma2s=Array{Float64,1}(undef,nx) +  count=0 +  # for each worker +  @sync for p in 1:length(work) +    # for each task +    @async for j in work[p] +      count=count+1 +      if count>=length(work) +        progress(count,nx,10000) +      end +      # run the task +      gamma2s[j]=remotecall_fetch(anyeq_uncondensed_2pt,workers()[p],xmin+(xmax-xmin)*j/nx,uxis[j],u,P,N,J,windowL,rho,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx,S,E,II,JJ,X,Y,sL1,sK) +    end    end +  for i in 1:nx +    @printf("% .15e % .15e\n",xmin+(xmax-xmin)*i/nx,gamma2s[i]) +  end +end + +# compute the compressibility +function anyeq_compressibility_rho( +  rhos::Array{Float64,1}, +  minlrho_init::Float64, +  nlrho_init::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Anyeq_approx, +  savefile::String +) +  # initialize vectors +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile) +    # compute initial guess from medeq -  rhos=Array{Float64}(undef,nlrho) -  for j in 0:nlrho-1 -    rhos[j+1]=(nlrho==1 ? rho : 10^(minlrho+(log10(rho)-minlrho)/(nlrho-1)*j)) +  u0s=anyeq_init_medeq(rhos,minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance) + +  # save result from each task +  es=Array{Float64,1}(undef,length(rhos)) +  err=Array{Float64,1}(undef,length(rhos)) + +  # spawn workers +  work=spawn_workers(length(rhos)) + +  # compute u +  (us,es,errs)=anyeq_hatu_rho_multithread(u0s,P,N,J,rhos,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx,work) + +  for j in 1:length(rhos)-2 +    # compute \rho^2\partial^2(\rho e)=\partial^2_{\log\rho}(\rho e)-\partial_{\log\rho}(\rho e) as a function of rho +    # \partial^2_{\log\rho}(\rho e) +    p2=(rhos[j+2]*es[j+2]-2*rhos[j+1]*es[j+1]+rhos[j]*es[j])/(log(rhos[j+2])-log(rhos[j+1]))/(log(rhos[j+1])-log(rhos[j])) +    # \partial_{\log\rho}(\rho e) (take average of front and back) +    p11=(rhos[j+2]*es[j+2]-rhos[j+1]*es[j+1])/(log(rhos[j+2])-log(rhos[j+1])) +    p12=(rhos[j+1]*es[j+1]-rhos[j]*es[j])/(log(rhos[j+1])-log(rhos[j])) +    # compressibility is 1/this +    @printf("% .15e % .15e\n",rhos[j+1],1/(p2-(p11+p12)/2))    end -  u0s=anyeq_init_medeq(rhos,N,J,k,a0,v,maxiter,tolerance) -  u0=u0s[nlrho] +end + +# Fourier transform 2 point correlation function test: compute by transforming anyeq_2pt +function anyeq_2pt_correlation_fourier_test( +  minlrho_init::Float64, +  nlrho_init::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  windowL::Float64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  xmax::Float64, +  kmin::Float64, +  kmax::Float64, +  nk::Int64, +  approx::Anyeq_approx, +  savefile::String +) +  # init vectors +  (weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v,approx,savefile) + +  # compute initial guess from medeq +  u0=anyeq_init_medeq([rho],minlrho_init,nlrho_init,N,J,k,a0,v,maxiter,tolerance)    # compute u and some useful integrals    (u,E,error)=anyeq_hatu(u0,P,N,J,rho,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx)    (S,E,II,JJ,X,Y,sL1,sK,G)=anyeq_SEIJGXY(rho*u,rho,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx) -  for i in 1:nx -    x=xmin+(xmax-xmin)*i/nx -    C2=anyeq_2pt(x,u,P,N,J,windowL,rho,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx,S,E,II,JJ,X,Y,sL1,sK,G) -    @printf("% .15e % .15e\n",x,C2) +  # compute C2 in real space +  C2=Array{Float64,1}(undef,N*J) +  for i in 1:N*J +    if k[i]<xmax +      C2[i]=anyeq_2pt(k[i],u,P,N,J,windowL,rho,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx,S,E,II,JJ,X,Y,sL1,sK)-rho^2 +    else +      C2[i]=0. +    end +  end +  # invert Fourier transform +  for i in 1:nk +    k0=kmin+(kmax-kmin)*i/nk +    hatC2=inverse_fourier_chebyshev(C2,k0,k,taus,weights,N,J) +    @printf("% .15e % .15e\n",k0,hatC2)    end  end  # compute Abar -function anyeq_Abar_multithread(k,weights,taus,T,P,N,J,approx) +function anyeq_Abar_multithread( +  k::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  approx::Anyeq_approx +)    if approx.bL3==0. -    return [] +    # empty array +    return Array{Array{Float64,5}}(undef,0)    end    out=Array{Array{Float64,5}}(undef,J*N) -  ## spawn workers -  # number of workers -  nw=nworkers() -  # split jobs among workers -  work=Array{Array{Int64,1},1}(undef,nw) -  # init empty arrays -  for p in 1:nw -    work[p]=zeros(0) -  end -  for j in 1:N*J -    append!(work[(j-1)%nw+1],j) -  end +  # spawn workers +  work=spawn_workers(N*J)    count=0    # for each worker -  @sync for p in 1:nw +  @sync for p in 1:length(work)      # for each task      @async for j in work[p]        count=count+1 -      if count>=nw +      if count>=length(work)          progress(count,N*J,10000)        end        # run the task @@ -419,14 +830,23 @@ function anyeq_Abar_multithread(k,weights,taus,T,P,N,J,approx)    return out  end +  # initialize computation -@everywhere function anyeq_init(taus,P,N,J,v) +@everywhere function anyeq_init( +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  v::Function, +  approx::Anyeq_approx, +  savefile::String +)    # Gauss-Legendre weights    weights=gausslegendre(N)    # initialize vectors V,k -  V=Array{Float64}(undef,J*N) -  k=Array{Float64}(undef,J*N) +  V=Array{Float64,1}(undef,J*N) +  k=Array{Float64,1}(undef,J*N)    for zeta in 0:J-1      for j in 1:N        xj=weights[1][j] @@ -437,7 +857,7 @@ end      end    end    # potential at 0 -  V0=v(0) +  V0=v(0.)    # initialize matrix A    T=chebyshev_polynomials(P) @@ -449,39 +869,62 @@ end    Upsilon=Upsilonmat(k,v,weights_plus)    Upsilon0=Upsilon0mat(k,v,weights_plus) -  return(weights,T,k,V,V0,A,Upsilon,Upsilon0) +  # init Abar +  if savefile!="" +    Abar=anyeq_read_Abar(savefile,P,N,J) +  else +    Abar=anyeq_Abar_multithread(k,weights,taus,T,P,N,J,approx) +  end + +  return(weights,T,k,V,V0,A,Abar,Upsilon,Upsilon0)  end  # compute initial guess from medeq -@everywhere function anyeq_init_medeq(rhos,N,J,k,a0,v,maxiter,tolerance) -  us_medeq=Array{Array{Float64,1}}(undef,length(rhos)) -  u0s=Array{Array{Float64,1}}(undef,length(rhos)) - +@everywhere function anyeq_init_medeq( +  rhos::Array{Float64,1}, +  minlrho_init::Float64, +  nlrho_init::Int64, +  N::Int64, +  J::Int64, +  k::Array{Float64,1}, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64 +)    weights_medeq=gausslegendre(N*J) +  (u0s_medeq,es,errs)=easyeq_compute_u_prevrho(rhos,minlrho_init,nlrho_init,a0,N*J,v,maxiter,tolerance,weights_medeq,Easyeq_approx(1.,1.)) -  (us_medeq[1],E,err)=easyeq_hatu(easyeq_init_u(a0,J*N,weights_medeq),J*N,rhos[1],v,maxiter,tolerance,weights_medeq,Easyeq_approx(1.,1.)) -  u0s[1]=easyeq_to_anyeq(us_medeq[1],weights_medeq,k,N,J) -  if err>tolerance -    print(stderr,"warning: computation of initial Ansatz failed for rho=",rhos[1],"\n") -  end - -  for j in 2:length(rhos) -    (us_medeq[j],E,err)=easyeq_hatu(us_medeq[j-1],J*N,rhos[j],v,maxiter,tolerance,weights_medeq,Easyeq_approx(1.,1.)) -    u0s[j]=easyeq_to_anyeq(us_medeq[j],weights_medeq,k,N,J) - -    if err>tolerance +  # check errs +  for j in 1:length(errs) +    if errs[j]>tolerance        print(stderr,"warning: computation of initial Ansatz failed for rho=",rhos[j],"\n")      end    end -  return u0s +  # return a single vector if there is a single rho +  if length(rhos)>1 +    u0s=Array{Array{Float64,1}}(undef,length(rhos)) +    for j in 1:length(u0s_medeq) +      u0s[j]=easyeq_to_anyeq(u0s_medeq[j],weights_medeq,k,N,J) +    end +    return u0s +  else +    return easyeq_to_anyeq(u0s_medeq,weights_medeq,k,N,J) +  end  end  # interpolate the solution of medeq to an input for anyeq -@everywhere function easyeq_to_anyeq(u_simple,weights,k,N,J) +@everywhere function easyeq_to_anyeq( +  u_simple::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  k::Array{Float64,1}, +  N::Int64, +  J::Int64 +)    # reorder u_simple, which is evaluated at (1-x_j)/(1+x_j) with x_j\in[-1,1]    u_s=zeros(Float64,length(u_simple)) -  k_s=Array{Float64}(undef,length(u_simple)) +  k_s=Array{Float64,1}(undef,length(u_simple))    for j in 1:length(u_simple)      xj=weights[1][j]      k_s[length(u_simple)-j+1]=(1-xj)/(1+xj) @@ -501,7 +944,27 @@ end  # compute u using chebyshev expansions -@everywhere function anyeq_hatu(u0,P,N,J,rho,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx) +@everywhere function anyeq_hatu( +  u0::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  rho::Float64, +  a0::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  V::Array{Float64,1}, +  V0::Float64, +  A::Array{Array{Float64,2},1}, +  Abar::Array{Array{Float64,5},1}, +  Upsilon::Array{Array{Float64,1},1}, +  Upsilon0::Array{Float64,1}, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Anyeq_approx +)    # init    # rescale by rho (that's how u is defined)    u=rho*u0 @@ -512,7 +975,7 @@ end    # run Newton algorithm    for i in 1:maxiter-1      (S,E,II,JJ,X,Y,sL1,sK,G)=anyeq_SEIJGXY(u,rho,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx) -    new=u-inv(anyeq_DXi(u,rho,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx,S,E,II,JJ,X,Y,sL1,sK))*anyeq_Xi(u,X,Y) +    new=u-inv(anyeq_DXi(u,rho,k,taus,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx,S,E,II,JJ,X,Y,sL1,sK))*anyeq_Xi(u,X,Y)      error=norm(new-u)/norm(u)      if(error<tolerance) @@ -528,8 +991,60 @@ end  end +# compute u for various rho +function anyeq_hatu_rho_multithread( +  u0s::Array{Array{Float64,1},1}, +  P::Int64, +  N::Int64, +  J::Int64, +  rhos::Array{Float64,1}, +  a0::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  V::Array{Float64,1}, +  V0::Float64, +  A::Array{Array{Float64,2},1}, +  Abar::Array{Array{Float64,5},1}, +  Upsilon::Array{Array{Float64,1},1}, +  Upsilon0::Array{Float64,1}, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Anyeq_approx, +  work::Array{Array{Int64,1},1} +) +  # compute u +  us=Array{Array{Float64,1}}(undef,length(rhos)) +  es=Array{Float64,1}(undef,length(rhos)) +  errs=Array{Float64,1}(undef,length(rhos)) +  count=0 +  # for each worker +  @sync for p in 1:length(work) +    # for each task +    @async for j in work[p] +      count=count+1 +      if count>=length(work) +	progress(count,length(rhos),10000) +      end +      # run the task +      (us[j],es[j],errs[j])=remotecall_fetch(anyeq_hatu,workers()[p],u0s[j],P,N,J,rhos[j],a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,approx) +    end +  end + +  return (us,es,errs) +end + +  # save Abar -function anyeq_save_Abar(taus,P,N,J,v,approx) +function anyeq_save_Abar( +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  v::Function, +  approx::Anyeq_approx +)    # initialize vectors    (weights,T,k,V,V0,A,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v) @@ -555,7 +1070,12 @@ function anyeq_save_Abar(taus,P,N,J,v,approx)  end  # read Abar -function anyeq_read_Abar(savefile,P,N,J) +function anyeq_read_Abar( +  savefile::String, +  P::Int64, +  N::Int64, +  J::Int64 +)     # open file    ff=open(savefile,"r")    # read all lines @@ -623,13 +1143,39 @@ end  # Xi  # takes the vector of kj's and xn's as input -@everywhere function anyeq_Xi(U,X,Y) +@everywhere function anyeq_Xi( +  U::Array{Float64,1}, +  X::Array{Float64,1}, +  Y::Array{Float64,1} +)    return U-(Y.+1)./(2*(X.+1)).*dotPhi((Y.+1)./((X.+1).^2))  end  # DXi  # takes the vector of kj's as input -@everywhere function anyeq_DXi(U,rho,k,taus,v,v0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx,S,E,II,JJ,X,Y,sL1,sK) +@everywhere function anyeq_DXi( +  U::Array{Float64,1}, +  rho::Float64, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  A::Array{Array{Float64,2},1}, +  Abar::Array{Array{Float64,5},1}, +  Upsilon::Array{Array{Float64,1},1}, +  Upsilon0::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  N::Int64, +  J::Int64, +  approx::Anyeq_approx, +  S::Array{Float64,1}, +  E::Float64, +  II::Array{Float64,1}, +  JJ::Array{Float64,1}, +  X::Array{Float64,1}, +  Y::Array{Float64,1}, +  sL1::Array{Float64,1}, +  sK::Array{Float64,1} +)    out=Array{Float64,2}(undef,N*J,N*J)    for zetapp in 0:J-1      for n in 1:N @@ -720,7 +1266,23 @@ end  end  # compute S,E,I,J,X and Y -@everywhere function anyeq_SEIJGXY(U,rho,k,taus,v,v0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx) +@everywhere function anyeq_SEIJGXY( +  U::Array{Float64,1}, +  rho::Float64, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  v::Array{Float64,1}, +  v0::Float64, +  A::Array{Array{Float64,2},1}, +  Abar::Array{Array{Float64,5},1}, +  Upsilon::Array{Array{Float64,1},1}, +  Upsilon0::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  N::Int64, +  J::Int64, +  approx::Anyeq_approx +)    # Chebyshev expansion of U    FU=chebyshev(U,taus,weights,P,N,J,2) @@ -798,79 +1360,207 @@ end    return(S,E,II,JJ,X,Y,sL1,sK,G)  end + +# u(x) +@everywhere function anyeq_u_x( +  x::Float64, +  u::Array{Float64,1}, +  k::Array{Float64,1}, +  N::Int64, +  J::Int64, +  taus::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}} +) +  ux=0. +  for zeta in 0:J-1 +    for j in 1:N +      ux+=(taus[zeta+2]-taus[zeta+1])/(16*pi*x)*weights[2][j]*cos(pi*weights[1][j]/2)*(1+k[zeta*N+j])^2*k[zeta*N+j]*u[zeta*N+j]*sin(k[zeta*N+j]*x) +    end +  end +  return real(ux) +end +  # condensate fraction -@everywhere function anyeq_eta(u,P,N,J,rho,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx) +@everywhere function anyeq_eta( +  u::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  V::Array{Float64,1}, +  V0::Float64, +  A::Array{Array{Float64,2},1}, +  Abar::Array{Array{Float64,5},1}, +  Upsilon::Array{Array{Float64,1},1}, +  Upsilon0::Array{Float64,1}, +  approx::Anyeq_approx +)    # compute dXi/dmu    (S,E,II,JJ,X,Y,sL1,sK,G)=anyeq_SEIJGXY(rho*u,rho,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx)    dXidmu=(Y.+1)./(rho*sL1)./(2*(X.+1).^2).*dotPhi((Y.+1)./((X.+1).^2))+(Y.+1).^2 ./((X.+1).^4)./(rho*sL1).*dotdPhi((Y.+1)./(X.+1).^2)    # compute eta -  du=-inv(anyeq_DXi(rho*u,rho,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx,S,E,II,JJ,X,Y,sL1,sK))*dXidmu +  du=-inv(anyeq_DXi(rho*u,rho,k,taus,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx,S,E,II,JJ,X,Y,sL1,sK))*dXidmu    eta=-avg_v_chebyshev(du,Upsilon0,k,taus,weights,N,J)/2    return eta  end -# momentum distribution -@everywhere function anyeq_momentum(u,P,N,J,rho,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx) -  # compute dXi/dlambda (without delta functions) -  (S,E,II,JJ,X,Y,sL1,sK,G)=anyeq_SEIJGXY(rho*u,rho,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx) -  dXidlambda=-(2*pi)^3*2*u./sL1.*(dotPhi((Y.+1)./((X.+1).^2))./(2*(X.+1))+(Y.+1)./(2*(X.+1).^3).*dotdPhi((Y.+1)./(X.+1).^2)) -  # approximation for delta function (without Kronecker deltas) -  delta=Array{Float64}(undef,J*N) -  for zeta in 0:J-1 -    for n in 1:N -      delta[zeta*N+n]=2/pi^2/((taus[zeta+2]-taus[zeta+1])*weights[2][n]*cos(pi*weights[1][n]/2)*(1+k[zeta*N+n])^2*k[zeta*N+n]^2) -    end -  end -   -  # compute dXidu -  dXidu=inv(anyeq_DXi(rho*u,rho,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx,S,E,II,JJ,X,Y,sL1,sK)) +# correlation function +@everywhere function anyeq_2pt( +  x::Float64, +  u::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  windowL::Float64, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  V::Array{Float64,1}, +  V0::Float64, +  A::Array{Array{Float64,2},1}, +  Abar::Array{Array{Float64,5},1}, +  Upsilon::Array{Array{Float64,1},1}, +  Upsilon0::Array{Float64,1}, +  approx::Anyeq_approx, +  S::Array{Float64,1}, +  E::Float64, +  II::Array{Float64,1}, +  JJ::Array{Float64,1}, +  X::Array{Float64,1}, +  Y::Array{Float64,1}, +  sL1::Array{Float64,1}, +  sK::Array{Float64,1} +) +  g=(r,x)->sinc(r*x)*hann(r,windowL) +  du=anyeq_dudv(g, x, u, P, N, J, rho, weights, k, taus, V, V0, A, Abar, Upsilon, Upsilon0, approx, S, E, II, JJ, X, Y, sL1, sK) -  M=Array{Float64}(undef,J*N) -  for i in 1:J*N -    # du/dlambda -    du=dXidu[:,i]*dXidlambda[i]*delta[i] +  C2=rho^2*(1-integrate_f_chebyshev(s->g(s,x),u,k,taus,weights,N,J)-integrate_f_chebyshev(s->1.,V.*du,k,taus,weights,N,J)) +end -    # compute M -    M[i]=-avg_v_chebyshev(du,Upsilon0,k,taus,weights,N,J)/2 +# uncondensed correlation function +@everywhere function anyeq_uncondensed_2pt( +  xi::Float64, +  uxi::Float64, +  u::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  windowL::Float64, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  V::Array{Float64,1}, +  V0::Float64, +  A::Array{Array{Float64,2},1}, +  Abar::Array{Array{Float64,5},1}, +  Upsilon::Array{Array{Float64,1},1}, +  Upsilon0::Array{Float64,1}, +  approx::Anyeq_approx, +  S::Array{Float64,1}, +  E::Float64, +  II::Array{Float64,1}, +  JJ::Array{Float64,1}, +  X::Array{Float64,1}, +  Y::Array{Float64,1}, +  sL1::Array{Float64,1}, +  sK::Array{Float64,1} +) +  # compute dXi/dmu +  g=Array{Float64,1}(undef,length(k)) +  for i in 1:length(k) +    g[i]=-2*rho*uxi*sinc(k[i]*xi)*hann(k[i],windowL)    end +  dXidmu=-g./sL1./(2*(X.+1)).*dotPhi((Y.+1)./((X.+1).^2))-(Y.+1).*g./sL1./(2(X.+1).^3).*dotdPhi((Y.+1)./(X.+1).^2) -  return M -end +  # compute gamma2 +  du=-inv(anyeq_DXi(rho*u,rho,k,taus,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx,S,E,II,JJ,X,Y,sL1,sK))*dXidmu +  gamma2=-avg_v_chebyshev(du,Upsilon0,k,taus,weights,N,J)/2 +  return gamma2 +end -# correlation function -@everywhere function anyeq_2pt(x,u,P,N,J,windowL,rho,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx,S,E,II,JJ,X,Y,sL1,sK,G) +# compute the directional derivative of u with respect to v in direction g +@everywhere function anyeq_dudv( +  g::Function,# should be of the form g(k,x) where x is a parameter +  x::Float64, +  u::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  V::Array{Float64,1}, +  V0::Float64, +  A::Array{Array{Float64,2},1}, +  Abar::Array{Array{Float64,5},1}, +  Upsilon::Array{Array{Float64,1},1}, +  Upsilon0::Array{Float64,1}, +  approx::Anyeq_approx, +  S::Array{Float64,1}, +  E::Float64, +  II::Array{Float64,1}, +  JJ::Array{Float64,1}, +  X::Array{Float64,1}, +  Y::Array{Float64,1}, +  sL1::Array{Float64,1}, +  sK::Array{Float64,1} +)    # initialize dV -  dV=Array{Float64}(undef,J*N) +  dV=Array{Float64,1}(undef,J*N)    for i in 1:J*N -    if x>0 -      dV[i]=sin(k[i]*x)/(k[i]*x)*hann(k[i],windowL) -    else -      dV[i]=hann(k[i],windowL) -    end +    dV[i]=g(k[i],x)    end -  dV0=1. +  dV0=g(0.,x)    # compute dUpsilon    # Upsilonmat does not use splines, so increase precision    weights_plus=gausslegendre(N*J) -  dUpsilon=Upsilonmat(k,r->sin(r*x)/(r*x)*hann(r,windowL),weights_plus) -  dUpsilon0=Upsilon0mat(k,r->sin(r*x)/(r*x)*hann(r,windowL),weights_plus) +  dUpsilon=Upsilonmat(k,s->g(s,x),weights_plus) +  dUpsilon0=Upsilon0mat(k,s->g(s,x),weights_plus) -  du=-inv(anyeq_DXi(rho*u,rho,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx,S,E,II,JJ,X,Y,sL1,sK))*anyeq_dXidv(x,rho*u,rho,k,taus,dV,dV0,A,Abar,dUpsilon,dUpsilon0,weights,P,N,J,approx,S,E,II,JJ,X,Y,sL1,sK) +  du=-inv(anyeq_DXi(rho*u,rho,k,taus,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx,S,E,II,JJ,X,Y,sL1,sK))*anyeq_dXidv(rho*u,rho,k,taus,dV,dV0,A,Abar,dUpsilon,dUpsilon0,weights,P,N,J,approx,S,E,II,JJ,X,Y,sL1,sK)    # rescale rho    du=du/rho -  C2=rho^2*(1-integrate_f_chebyshev(s->1.,u.*dV+V.*du,k,taus,weights,N,J)) - -  return C2 +  return du  end -# derivative of Xi with respect to v in the direction sin(kx)/kx -@everywhere function anyeq_dXidv(x,U,rho,k,taus,dv,dv0,A,Abar,dUpsilon,dUpsilon0,weights,P,N,J,approx,S,E,II,JJ,X,Y,sL1,sK) +# derivative of Xi with respect to v in the specified by dUpsilon and dUpsilon0 +@everywhere function anyeq_dXidv( +  U::Array{Float64,1}, +  rho::Float64, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  dv::Array{Float64,1}, +  dv0::Float64, +  A::Array{Array{Float64,2},1}, +  Abar::Array{Array{Float64,5},1}, +  dUpsilon::Array{Array{Float64,1},1}, +  dUpsilon0::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  N::Int64, +  J::Int64, +  approx::Anyeq_approx, +  S::Array{Float64,1}, +  E::Float64, +  II::Array{Float64,1}, +  JJ::Array{Float64,1}, +  X::Array{Float64,1}, +  Y::Array{Float64,1}, +  sL1::Array{Float64,1}, +  sK::Array{Float64,1} +)    # Chebyshev expansion of U    FU=chebyshev(U,taus,weights,P,N,J,2) @@ -896,7 +1586,7 @@ end        dJJ+=approx.gL3*approx.bL3*double_conv_S_chebyshev(FU,FU,FU,FU,dFS,Abar)      end      if approx.bL3!=1. -      dJJ=approx.gL3*(1-approx.bL3)*dE*(UU/rho).^2 +      dJJ+=approx.gL3*(1-approx.bL3)*dE*(UU/rho).^2      end    end @@ -947,3 +1637,220 @@ end    out=((Y.+1).*dX./(X.+1)-dY)./(2*(X.+1)).*dotPhi((Y.+1)./((X.+1).^2))+(Y.+1)./(2*(X.+1).^3).*(2*(Y.+1)./(X.+1).*dX-dY).*dotdPhi((Y.+1)./(X.+1).^2)    return out  end + +# maximum of 2 point correlation function +@everywhere function anyeq_2pt_max( +  u::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  x0::Float64, +  dx::Float64, +  maxstep::Float64, +  maxiter::Int64, +  tolerance::Float64, +  windowL::Float64, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  T::Array{Polynomial,1}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  V::Array{Float64,1}, +  V0::Float64, +  A::Array{Array{Float64,2},1}, +  Abar::Array{Array{Float64,5},1}, +  Upsilon::Array{Array{Float64,1},1}, +  Upsilon0::Array{Float64,1}, +  approx::Anyeq_approx +) +  # compute some useful integrals +  (S,E,II,JJ,X,Y,sL1,sK,G)=anyeq_SEIJGXY(rho*u,rho,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx) + +  (x,f)=newton_maximum(y->anyeq_2pt(y,u,P,N,J,windowL,rho,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx,S,E,II,JJ,X,Y,sL1,sK),x0,dx,maxiter,tolerance,maxstep) + +  return(x,f) +end + + +# Fourier transform of 2pt correlation function at q +@everywhere function anyeq_2pt_fourier( +  q::Float64, +  u::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  windowL::Float64, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  V::Array{Float64,1}, +  V0::Float64, +  A::Array{Array{Float64,2},1}, +  Abar::Array{Array{Float64,5},1}, +  Upsilon::Array{Array{Float64,1},1}, +  Upsilon0::Array{Float64,1}, +  approx::Anyeq_approx, +  S::Array{Float64,1}, +  E::Float64, +  II::Array{Float64,1}, +  JJ::Array{Float64,1}, +  X::Array{Float64,1}, +  Y::Array{Float64,1}, +  sL1::Array{Float64,1}, +  sK::Array{Float64,1} +) +  # direction in which to differentiate u +  weights_plus=gausslegendre(N*J) +  #g=(r,x)->(r>0. ? (1.)/(2*x*r)*integrate_legendre(s->s*gaussian(s,(1.)/windowL),abs(x-r),x+r,weights_plus) : gaussian(x,(1.)/windowL)) +  g=(r,x)->(r>0. ? (1.)/(2*x*r*windowL)*(gaussian(x-r,(1.)/windowL)-gaussian(x+r,(1.)/windowL)) : gaussian(x,(1.)/windowL)) + +  du=anyeq_dudv(g,q,u,P,N,J,rho,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx,S,E,II,JJ,X,Y,sL1,sK) + +  C2=rho^2*(-integrate_f_chebyshev(s->g(s,q),u,k,taus,weights,N,J)-integrate_f_chebyshev(s->1.,V.*du,k,taus,weights,N,J)) + +  return C2 +end + +# maximum of Fourier transform of 2 point correlation function +@everywhere function anyeq_2pt_fourier_max( +  u::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  k0::Float64, +  dk::Float64, +  maxstep::Float64, +  maxiter::Int64, +  tolerance::Float64, +  windowL::Float64, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  T::Array{Polynomial,1}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  V::Array{Float64,1}, +  V0::Float64, +  A::Array{Array{Float64,2},1}, +  Abar::Array{Array{Float64,5},1}, +  Upsilon::Array{Array{Float64,1},1}, +  Upsilon0::Array{Float64,1}, +  approx::Anyeq_approx +) +  # compute some useful integrals +  (S,E,II,JJ,X,Y,sL1,sK,G)=anyeq_SEIJGXY(rho*u,rho,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx) + +  (ko,f)=newton_maximum(y->anyeq_2pt_fourier(y,u,P,N,J,windowL,rho,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,approx,S,E,II,JJ,X,Y,sL1,sK),k0,dk,maxiter,tolerance,maxstep) + +  return(ko,f) +end + +# momentum distribution, computed using a Gaussian window +@everywhere function anyeq_momentum_window( +  kmin::Float64, +  kmax::Float64, +  u::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  windowL::Float64, # L is windowL/k^2 +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  V::Array{Float64,1}, +  V0::Float64, +  A::Array{Array{Float64,2},1}, +  Abar::Array{Array{Float64,5},1}, +  Upsilon::Array{Array{Float64,1},1}, +  Upsilon0::Array{Float64,1}, +  approx::Anyeq_approx +) + +  # compute dXi/dlambda without the delta function of u(q) +  (S,E,II,JJ,X,Y,sL1,sK,G)=anyeq_SEIJGXY(rho*u,rho,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx) +  dXidlambda=(16*pi^3)*(dotPhi((Y.+1)./((X.+1).^2))./(2*(X.+1))+(Y.+1)./(2*(X.+1).^3).*dotdPhi((Y.+1)./(X.+1).^2))./sL1 +   +  # compute dXidu +  dXidu=inv(anyeq_DXi(rho*u,rho,k,taus,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx,S,E,II,JJ,X,Y,sL1,sK)) + +  M=Array{Float64,1}(undef,N*J) +  for j in 1:J*N +    # the Chebyshev polynomial expansion is often not good enough to compute M away from k[i] +    q=k[j] + +    # drop the computation if not in k interval +    if q<kmin || q>kmax +      continue +    end + +    # delta function +    delta=Array{Float64,1}(undef,J*N) +    L=windowL/q^2 +    for i in 1:J*N +      delta[i]=(1.)/(2*k[i]*q*L)*(gaussian(k[i]-q,(1.)/L)-gaussian(k[i]+q,(1.)/L)) +    end + +    # du/dlambda +    du=-dXidu*(dXidlambda.*delta*u[j]) +    # rescale u +    du=du/rho + +    # compute M +    M[j]=-avg_v_chebyshev(du,Upsilon0,k,taus,weights,N,J)*rho/2 +  end + +  return M +end + +# momentum distribution, computed using a discrete approximation of the delta function +@everywhere function anyeq_momentum_discrete_delta( +  kmin::Float64, +  kmax::Float64, +  u::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  V::Array{Float64,1}, +  V0::Float64, +  A::Array{Array{Float64,2},1}, +  Abar::Array{Array{Float64,5},1}, +  Upsilon::Array{Array{Float64,1},1}, +  Upsilon0::Array{Float64,1}, +  approx::Anyeq_approx +) +  # compute dXi/dlambda (without delta functions) +  (S,E,II,JJ,X,Y,sL1,sK,G)=anyeq_SEIJGXY(rho*u,rho,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx) +  dXidlambda=(2*pi)^3*2*u./sL1.*(dotPhi((Y.+1)./((X.+1).^2))./(2*(X.+1))+(Y.+1)./(2*(X.+1).^3).*dotdPhi((Y.+1)./(X.+1).^2)) + +  # approximation for delta function (without Kronecker deltas) +  delta=Array{Float64,1}(undef,J*N) +  for zeta in 0:J-1 +    for n in 1:N +      delta[zeta*N+n]=8/pi/((taus[zeta+2]-taus[zeta+1])*weights[2][n]*cos(pi*weights[1][n]/2)*(1+k[zeta*N+n])^2) +    end +  end +   +  # compute dXidu +  dXidu=inv(anyeq_DXi(rho*u,rho,k,taus,A,Abar,Upsilon,Upsilon0,weights,P,N,J,approx,S,E,II,JJ,X,Y,sL1,sK)) + +  M=Array{Float64,1}(undef,J*N) +  for i in 1:J*N +    # drop the computation if not in k interval +    if k[i]<kmin || k[i]>kmax +      continue +    end + +    # du/dlambda +    du=-dXidu[:,i]*dXidlambda[i]*delta[i] + +    # compute M +    M[i]=-avg_v_chebyshev(du,Upsilon0,k,taus,weights,N,J)/2 +  end + +  return M +end diff --git a/src/chebyshev.jl b/src/chebyshev.jl index 28c8f1f..af4be40 100644 --- a/src/chebyshev.jl +++ b/src/chebyshev.jl @@ -1,4 +1,4 @@ -## Copyright 2021 Ian Jauslin +## Copyright 2021-2023 Ian Jauslin  ##   ## Licensed under the Apache License, Version 2.0 (the "License");  ## you may not use this file except in compliance with the License. @@ -13,7 +13,15 @@  ## limitations under the License.  # Chebyshev expansion -@everywhere function chebyshev(a,taus,weights,P,N,J,nu) +@everywhere function chebyshev( +  a::Array{Float64,1}, +  taus::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  N::Int64, +  J::Int64, +  nu::Int64 +)    out=zeros(Float64,J*(P+1))    for zeta in 0:J-1      for n in 0:P @@ -27,7 +35,15 @@  end  # evaluate function from Chebyshev expansion -@everywhere function chebyshev_eval(Fa,x,taus,chebyshev,P,J,nu) +@everywhere function chebyshev_eval( +  Fa::Array{Float64,1}, +  x::Float64, +  taus::Array{Float64,1}, +  chebyshev::Array{Polynomial,1}, +  P::Int64, +  J::Int64, +  nu::Int64 +)    # change variable    tau=(1-x)/(1+x) @@ -48,7 +64,11 @@ end  # convolution   # input the Chebyshev expansion of a and b, as well as the A matrix -@everywhere function conv_chebyshev(Fa,Fb,A) +@everywhere function conv_chebyshev( +  Fa::Array{Float64,1}, +  Fb::Array{Float64,1}, +  A::Array{Array{Float64,2},1} +)    out=zeros(Float64,length(A))    for i in 1:length(A)      out[i]=dot(Fa,A[i]*Fb) @@ -57,12 +77,27 @@ end  end  # <ab> -@everywhere function avg_chebyshev(Fa,Fb,A0) +@everywhere function avg_chebyshev( +  Fa::Array{Float64,1}, +  Fb::Array{Float64,1}, +  A0::Float64 +)    return dot(Fa,A0*Fb)  end  # 1_n * a -@everywhere function conv_one_chebyshev(n,zetapp,Fa,A,taus,weights,P,N,J,nu1) +@everywhere function conv_one_chebyshev( +  n::Int64, +  zetapp::Int64, +  Fa::Array{Float64,1}, +  A::Array{Array{Float64,2},1}, +  taus::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  N::Int64, +  J::Int64, +  nu1::Int64 +)    out=zeros(Float64,N*J)    for m in 1:N*J      for l in 0:P @@ -74,7 +109,15 @@ end    return out  end  # a * v -@everywhere function conv_v_chebyshev(a,Upsilon,k,taus,weights,N,J) +@everywhere function conv_v_chebyshev( +  a::Array{Float64,1}, +  Upsilon::Array{Array{Float64,1},1}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  N::Int64, +  J::Int64 +)    out=zeros(Float64,J*N)    for i in 1:J*N      for zetap in 0:J-1 @@ -86,7 +129,16 @@ end    end    return out  end -@everywhere function conv_one_v_chebyshev(n,zetap,Upsilon,k,taus,weights,N,J) +@everywhere function conv_one_v_chebyshev( +  n::Int64, +  zetap::Int64, +  Upsilon::Array{Array{Float64,1},1}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  N::Int64, +  J::Int64 +)    out=zeros(Float64,J*N)    xj=weights[1][n]    for i in 1:J*N @@ -96,7 +148,14 @@ end  end  # <av> -@everywhere function avg_v_chebyshev(a,Upsilon0,k,taus,weights,N,J) +@everywhere function avg_v_chebyshev(a, +  Upsilon0::Array{Float64,1}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  N::Int64, +  J::Int64 +)    out=0.    for zetap in 0:J-1      for j in 1:N @@ -107,13 +166,28 @@ end    return out  end  # <1_nv> -@everywhere function avg_one_v_chebyshev(n,zetap,Upsilon0,k,taus,weights,N) +@everywhere function avg_one_v_chebyshev( +  n::Int64, +  zetap::Int64, +  Upsilon0::Array{Float64,1}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  N::Int64 +)    xj=weights[1][n]    return (taus[zetap+2]-taus[zetap+1])/(32*pi)*weights[2][n]*cos(pi*xj/2)*(1+k[zetap*N+n])^2*k[zetap*N+n]*Upsilon0[zetap*N+n]  end  # compute \int dq dxi u1(k-xi)u2(q)u3(xi)u4(k-q)u5(xi-q) -@everywhere function double_conv_S_chebyshev(FU1,FU2,FU3,FU4,FU5,Abar) +@everywhere function double_conv_S_chebyshev( +  FU1::Array{Float64,1}, +  FU2::Array{Float64,1}, +  FU3::Array{Float64,1}, +  FU4::Array{Float64,1}, +  FU5::Array{Float64,1}, +  Abar::Array{Float64,5} +)    out=zeros(Float64,length(Abar))    for i in 1:length(Abar)      for j1 in 1:length(FU1) @@ -133,7 +207,17 @@ end  # compute A -@everywhere function Amat(k,weights,taus,T,P,N,J,nua,nub) +@everywhere function Amat( +  k::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  nua::Int64, +  nub::Int64 +)    out=Array{Array{Float64,2},1}(undef,J*N)    for i in 1:J*N      out[i]=zeros(Float64,J*(P+1),J*(P+1)) @@ -152,7 +236,11 @@ end  end  # compute Upsilon -@everywhere function Upsilonmat(k,v,weights) +@everywhere function Upsilonmat( +  k::Array{Float64,1}, +  v::Function, +  weights::Tuple{Array{Float64,1},Array{Float64,1}} +)    out=Array{Array{Float64,1},1}(undef,length(k))    for i in 1:length(k)      out[i]=Array{Float64,1}(undef,length(k)) @@ -162,7 +250,11 @@ end    end    return out  end -@everywhere function Upsilon0mat(k,v,weights) +@everywhere function Upsilon0mat( +  k::Array{Float64,1}, +  v::Function, +  weights::Tuple{Array{Float64,1},Array{Float64,1}} +)    out=Array{Float64,1}(undef,length(k))    for j in 1:length(k)      out[j]=2*k[j]*v(k[j]) @@ -171,17 +263,36 @@ end  end  # alpha_- -@everywhere function alpham(k,t) +@everywhere function alpham( +  k::Float64, +  t::Float64 +)    return (1-k-(1-t)/(1+t))/(1+k+(1-t)/(1+t))  end  # alpha_+ -@everywhere function alphap(k,t) +@everywhere function alphap( +  k::Float64, +  t::Float64 +)    return (1-abs(k-(1-t)/(1+t)))/(1+abs(k-(1-t)/(1+t)))  end  # compute \bar A -@everywhere function barAmat(k,weights,taus,T,P,N,J,nu1,nu2,nu3,nu4,nu5) +@everywhere function barAmat( +  k::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  nu1::Int64, +  nu2::Int64, +  nu3::Int64, +  nu4::Int64, +  nu5::Int64 +)    out=zeros(Float64,J*(P+1),J*(P+1),J*(P+1),J*(P+1),J*(P+1))    for zeta1 in 0:J-1      for n1 in 0:P @@ -211,27 +322,107 @@ end    return out  end -@everywhere function barAmat_int1(tau,k,taus,T,weights,nu1,nu2,nu3,nu4,nu5,zeta1,zeta2,zeta3,zeta4,zeta5,n1,n2,n3,n4,n5) +@everywhere function barAmat_int1(tau, +  k::Float64, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  nu1::Int64, +  nu2::Int64, +  nu3::Int64, +  nu4::Int64, +  nu5::Int64, +  zeta1::Int64, +  zeta2::Int64, +  zeta3::Int64, +  zeta4::Int64, +  zeta5::Int64, +  n1::Int64, +  n2::Int64, +  n3::Int64, +  n4::Int64, +  n5::Int64 +)    if(alpham(k,tau)<taus[zeta2+2] && alphap(k,tau)>taus[zeta2+1])      return 2*(1-tau)/(1+tau)^(3-nu1)*T[n1+1]((2*tau-(taus[zeta1+1]+taus[zeta1+2]))/(taus[zeta1+2]-taus[zeta1+1]))*integrate_legendre(sigma->barAmat_int2(tau,sigma,k,taus,T,weights,nu2,nu3,nu4,nu5,zeta2,zeta3,zeta4,zeta5,n2,n3,n4,n5),max(taus[zeta2+1],alpham(k,tau)),min(taus[zeta2+2],alphap(k,tau)),weights)    else      return 0.    end  end -@everywhere function barAmat_int2(tau,sigma,k,taus,T,weights,nu2,nu3,nu4,nu5,zeta2,zeta3,zeta4,zeta5,n2,n3,n4,n5) +@everywhere function barAmat_int2(tau, +  sigma::Float64, +  k::Float64, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  nu2::Int64, +  nu3::Int64, +  nu4::Int64, +  nu5::Int64, +  zeta2::Int64, +  zeta3::Int64, +  zeta4::Int64, +  zeta5::Int64, +  n2::Int64, +  n3::Int64, +  n4::Int64, +  n5::Int64 +)    return 2*(1-sigma)/(1+sigma)^(3-nu2)*T[n2+1]((2*sigma-(taus[zeta2+1]+taus[zeta2+2]))/(taus[zeta2+2]-taus[zeta2+1]))*integrate_legendre(taup->barAmat_int3(tau,sigma,taup,k,taus,T,weights,nu3,nu4,nu5,zeta3,zeta4,zeta5,n3,n4,n5),taus[zeta3+1],taus[zeta3+2],weights)  end -@everywhere function barAmat_int3(tau,sigma,taup,k,taus,T,weights,nu3,nu4,nu5,zeta3,zeta4,zeta5,n3,n4,n5) +@everywhere function barAmat_int3(tau, +  sigma::Float64, +  taup::Float64, +  k::Float64, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  nu3::Int64, +  nu4::Int64, +  nu5::Int64, +  zeta3::Int64, +  zeta4::Int64, +  zeta5::Int64, +  n3::Int64, +  n4::Int64, +  n5::Int64 +)    if(alpham(k,taup)<taus[zeta4+2] && alphap(k,taup)>taus[zeta4+1])      return 2*(1-taup)/(1+taup)^(3-nu3)*T[n3+1]((2*taup-(taus[zeta3+1]+taus[zeta3+2]))/(taus[zeta3+2]-taus[zeta3+1]))*integrate_legendre(sigmap->barAmat_int4(tau,sigma,taup,sigmap,k,taus,T,weights,nu4,nu5,zeta4,zeta5,n4,n5),max(taus[zeta4+1],alpham(k,taup)),min(taus[zeta4+2],alphap(k,taup)),weights)    else      return 0.    end  end -@everywhere function barAmat_int4(tau,sigma,taup,sigmap,k,taus,T,weights,nu4,nu5,zeta4,zeta5,n4,n5) +@everywhere function barAmat_int4(tau, +  sigma::Float64, +  taup::Float64, +  sigmap::Float64, +  k::Float64, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  nu4::Int64, +  nu5::Int64, +  zeta4::Int64, +  zeta5::Int64, +  n4::Int64, +  n5::Int64 +)    return 2*(1-sigmap)/(1+sigmap)^(3-nu4)*T[n4+1]((2*sigma-(taus[zeta4+1]+taus[zeta4+2]))/(taus[zeta4+2]-taus[zeta4+1]))*integrate_legendre(theta->barAmat_int5(tau,sigma,taup,sigmap,theta,k,taus,T,weights,nu5,zeta5,n5),0.,2*pi,weights)  end -@everywhere function barAmat_int5(tau,sigma,taup,sigmap,theta,k,taus,T,weights,nu5,zeta5,n5) +@everywhere function barAmat_int5(tau, +  sigma::Float64, +  taup::Float64, +  sigmap::Float64, +  theta::Float64, +  k::Float64, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  nu5::Int64, +  zeta5::Int64, +  n5::Int64 +)    R=barAmat_R((1-sigma)/(1+sigma),(1-tau)/(1+tau),(1-sigmap)/(1+sigmap),(1-taup)/(1+taup),theta,k)    if((1-R)/(1+R)<taus[zeta5+2] && (1-R)/(1+R)>taus[zeta5+1])      return (2/(2+R))^nu5*T[n5+1]((2*(1-R)/(1+R)-(taus[zeta5+1]+taus[zeta5+2]))/(taus[zeta5+2]-taus[zeta5+1])) @@ -240,13 +431,22 @@ end    end  end  # R(s,t,s',t,theta,k) -@everywhere function barAmat_R(s,t,sp,tp,theta,k) -  return sqrt(k^2*(s^2+t^2+sp^2+tp^2)-k^4-(s^2-t^2)*(sp^2-tp^2)-sqrt((4*k^2*s^2-(k^2+s^2-t^2)^2)*(4*k^2*sp^2-(k^2+sp^2-tp^2)^2))*cos(theta))/(sqrt(2)*k) +@everywhere function barAmat_R( +  s::Float64, +  t::Float64, +  sp::Float64, +  tp::Float64, +  theta::Float64, +  k::Float64 +) +  return sqrt(k^2*(s^2+t^2+sp^2+tp^2)-k^4-(s^2-t^2)*(sp^2-tp^2)-sqrt((4*k^2*s^2-(k^2+s^2-t^2)^2)*(4*k^2*sp^2-(k^2+sp^2-tp^2)^2))*cos(theta))/(sqrt(2.)*k)  end  # compute Chebyshev polynomials -@everywhere function chebyshev_polynomials(P) -  T=Array{Polynomial}(undef,P+1) +@everywhere function chebyshev_polynomials( +  P::Int64 +) +  T=Array{Polynomial,1}(undef,P+1)    T[1]=Polynomial([1])    T[2]=Polynomial([0,1])    for n in 1:P-1 @@ -258,7 +458,15 @@ end  end  # compute \int f*u dk/(2*pi)^3 -@everywhere function integrate_f_chebyshev(f,u,k,taus,weights,N,J) +@everywhere function integrate_f_chebyshev( +  f::Function, +  u::Array{Float64,1}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  N::Int64, +  J::Int64 +)    out=0.    for zeta in 0:J-1      for i in 1:N @@ -268,7 +476,15 @@ end    return out  end -@everywhere function inverse_fourier_chebyshev(u,x,k,taus,weights,N,J) +@everywhere function inverse_fourier_chebyshev( +  u::Array{Float64,1}, +  x::Float64, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  N::Int64, +  J::Int64 +)    out=0.    for zeta in 0:J-1      for j in 1:N @@ -277,3 +493,54 @@ end    end    return out  end + +# compute B (for the computation of the fourier transform of the two-point correlation) +@everywhere function Bmat( +  q::Float64, +  k::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  nu::Int64 +) +  out=Array{Array{Float64,1},1}(undef,J*N) +  for i in 1:J*N +    out[i]=zeros(Float64,J*(P+1)) +    for zeta in 0:J-1 +      for n in 0:P +	out[i][zeta*(P+1)+n+1]=1/(8*pi^3*k[i]*q)*(betam(k[i],q)>taus[zeta+2] || betap(k[i],q)<taus[zeta+1] ? 0. : integrate_legendre(sigma->(1-sigma)/(1+sigma)^(3-nu)*T[n+1]((2*sigma-(taus[zeta+1]+taus[zeta+2]))/(taus[zeta+2]-taus[zeta+1])),max(taus[zeta+1],betam(k[i],q)),min(taus[zeta+2],betap(k[i],q)),weights)) +      end +    end +  end + +  return out +end +# beta_- +@everywhere function betam( +  k::Float64, +  q::Float64 +) +  return (1-k-q)/(1+k+q) +end +# beta_+ +@everywhere function betap( +  k::Float64, +  q::Float64 +) +  return (1-abs(k-q))/(1+abs(k-q)) +end + +# mathfrak S (for the computation of the fourier transform of the two-point correlation) +@everywhere function chebyshev_frakS( +  Ff::Array{Float64,1}, +  B::Array{Array{Float64,1},1} +) +  out=zeros(Float64,length(B)) +  for i in 1:length(B) +    out[i]=dot(Ff,B[i]) +  end +  return out +end diff --git a/src/easyeq.jl b/src/easyeq.jl index 0bde3ab..2dbbd1a 100644 --- a/src/easyeq.jl +++ b/src/easyeq.jl @@ -1,4 +1,4 @@ -## Copyright 2021 Ian Jauslin +## Copyright 2021-2023 Ian Jauslin  ##   ## Licensed under the Apache License, Version 2.0 (the "License");  ## you may not use this file except in compliance with the License. @@ -19,47 +19,65 @@  end  # compute energy -function easyeq_energy(minlrho_init,nlrho_init,order,rho,a0,v,maxiter,tolerance,approx) +function easyeq_energy( +  minlrho_init::Float64, +  nlrho_init::Int64, +  order::Int64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Easyeq_approx +)    # compute gaussian quadrature weights    weights=gausslegendre(order) -  # compute initial guess from previous rho -  (u,E,err)=easyeq_hatu(easyeq_init_u(a0,order,weights),order,(10.)^minlrho_init,v,maxiter,tolerance,weights,approx) -  for j in 2:nlrho_init -    rho_tmp=10^(minlrho_init+(log10(rho)-minlrho_init)*(j-1)/(nlrho_init-1)) -    (u,E,err)=easyeq_hatu(u,order,rho_tmp,v,maxiter,tolerance,weights,approx) -  end +  # compute u +  (u,E,err)= easyeq_compute_u_prevrho([rho],minlrho_init,nlrho_init,a0,order,v,maxiter,tolerance,weights,approx)    # print energy    @printf("% .15e % .15e\n",real(E),err)  end  # compute energy as a function of rho -function easyeq_energy_rho(rhos,order,a0,v,maxiter,tolerance,approx) +function easyeq_energy_rho( +  rhos::Array{Float64,1}, +  minlrho_init::Float64, +  nlrho_init::Int64, +  order::Int64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Easyeq_approx +)    # compute gaussian quadrature weights    weights=gausslegendre(order) -  # init u -  u=easyeq_init_u(a0,order,weights) +  # compute u +  (us,es,errs)= easyeq_compute_u_prevrho(rhos,minlrho_init,nlrho_init,a0,order,v,maxiter,tolerance,weights,approx)    for j in 1:length(rhos) -    # compute u (init newton with previously computed u) -    (u,E,err)=easyeq_hatu(u,order,rhos[j],v,maxiter,tolerance,weights,approx) - -    @printf("% .15e % .15e % .15e\n",rhos[j],real(E),err) - +    @printf("% .15e % .15e % .15e\n",rhos[j],real(es[j]),errs[j])    end  end  # compute u(k) -function easyeq_uk(minlrho_init,nlrho_init,order,rho,a0,v,maxiter,tolerance,approx) +function easyeq_uk( +  minlrho_init::Float64, +  nlrho_init::Int64, +  order::Int64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Easyeq_approx +)    weights=gausslegendre(order) -  # compute initial guess from previous rho -  (u,E,err)=easyeq_hatu(easyeq_init_u(a0,order,weights),order,(10.)^minlrho_init,v,maxiter,tolerance,weights,approx) -  for j in 2:nlrho_init -    rho_tmp=10^(minlrho_init+(log10(rho)-minlrho_init)*(j-1)/(nlrho_init-1)) -    (u,E,err)=easyeq_hatu(u,order,rho_tmp,v,maxiter,tolerance,weights,approx) -  end +  # compute u +  (u,E,err)= easyeq_compute_u_prevrho_error([rho],minlrho_init,nlrho_init,a0,order,v,maxiter,tolerance,weights,approx)    for i in 1:order      k=(1-weights[1][i])/(1+weights[1][i]) @@ -68,15 +86,24 @@ function easyeq_uk(minlrho_init,nlrho_init,order,rho,a0,v,maxiter,tolerance,appr  end  # compute u(x) -function easyeq_ux(minlrho_init,nlrho_init,order,rho,a0,v,maxiter,tolerance,xmin,xmax,nx,approx) +function easyeq_ux( +  minlrho_init::Float64, +  nlrho_init::Int64, +  order::Int64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  xmin::Float64, +  xmax::Float64, +  nx::Int64, +  approx::Easyeq_approx +)    weights=gausslegendre(order) -  # compute initial guess from previous rho -  (u,E,err)=easyeq_hatu(easyeq_init_u(a0,order,weights),order,(10.)^minlrho_init,v,maxiter,tolerance,weights,approx) -  for j in 2:nlrho_init -    rho_tmp=10^(minlrho_init+(log10(rho)-minlrho_init)*(j-1)/(nlrho_init-1)) -    (u,E,err)=easyeq_hatu(u,order,rho_tmp,v,maxiter,tolerance,weights,approx) -  end +  # compute u +  (u,E,err)= easyeq_compute_u_prevrho_error([rho],minlrho_init,nlrho_init,a0,order,v,maxiter,tolerance,weights,approx)    for i in 1:nx      x=xmin+(xmax-xmin)*i/nx @@ -85,15 +112,24 @@ function easyeq_ux(minlrho_init,nlrho_init,order,rho,a0,v,maxiter,tolerance,xmin  end  # compute 2u(x)-rho u*u(x) -function easyeq_uux(minlrho_init,nlrho_init,order,rho,a0,v,maxiter,tolerance,xmin,xmax,nx,approx) +function easyeq_uux( +  minlrho_init::Float64, +  nlrho_init::Int64, +  order::Int64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  xmin::Float64, +  xmax::Float64, +  nx::Int64, +  approx::Easyeq_approx +)    weights=gausslegendre(order) -  # compute initial guess from previous rho -  (u,E,err)=easyeq_hatu(easyeq_init_u(a0,order,weights),order,(10.)^minlrho_init,v,maxiter,tolerance,weights,approx) -  for j in 2:nlrho_init -    rho_tmp=10^(minlrho_init+(log10(rho)-minlrho_init)*(j-1)/(nlrho_init-1)) -    (u,E,err)=easyeq_hatu(u,order,rho_tmp,v,maxiter,tolerance,weights,approx) -  end +  # compute u +  (u,E,err)= easyeq_compute_u_prevrho_error([rho],minlrho_init,nlrho_init,a0,order,v,maxiter,tolerance,weights,approx)    for i in 1:nx      x=xmin+(xmax-xmin)*i/nx @@ -102,16 +138,22 @@ function easyeq_uux(minlrho_init,nlrho_init,order,rho,a0,v,maxiter,tolerance,xmi  end  # condensate fraction -function easyeq_condensate_fraction(minlrho_init,nlrho_init,order,rho,a0,v,maxiter,tolerance,approx) +function easyeq_condensate_fraction( +  minlrho_init::Float64, +  nlrho_init::Int64, +  order::Int64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Easyeq_approx +)    # compute gaussian quadrature weights    weights=gausslegendre(order) -  # compute initial guess from previous rho -  (u,E,err)=easyeq_hatu(easyeq_init_u(a0,order,weights),order,(10.)^minlrho_init,v,maxiter,tolerance,weights,approx) -  for j in 2:nlrho_init -    rho_tmp=10^(minlrho_init+(log10(rho)-minlrho_init)*(j-1)/(nlrho_init-1)) -    (u,E,err)=easyeq_hatu(u,order,rho_tmp,v,maxiter,tolerance,weights,approx) -  end +  # compute u +  (u,E,err)= easyeq_compute_u_prevrho([rho],minlrho_init,nlrho_init,a0,order,v,maxiter,tolerance,weights,approx)    # compute eta    eta=easyeq_eta(u,order,rho,v,maxiter,tolerance,weights,approx) @@ -121,25 +163,350 @@ function easyeq_condensate_fraction(minlrho_init,nlrho_init,order,rho,a0,v,maxit  end  # condensate fraction as a function of rho -function easyeq_condensate_fraction_rho(rhos,order,a0,v,maxiter,tolerance,approx) +function easyeq_condensate_fraction_rho( +  rhos::Array{Float64,1}, +  minlrho_init::Float64, +  nlrho_init::Int64, +  order::Int64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Easyeq_approx +)    weights=gausslegendre(order) -  # init u -  u=easyeq_init_u(a0,order,weights) +  # compute u +  (us,es,errs)= easyeq_compute_u_prevrho(rhos,minlrho_init,nlrho_init,a0,order,v,maxiter,tolerance,weights,approx)    for j in 1:length(rhos) -    # compute u (init newton with previously computed u) -    (u,E,err)=easyeq_hatu(u,order,rhos[j],v,maxiter,tolerance,weights,approx) -      # compute eta -    eta=easyeq_eta(u,order,rhos[j],v,maxiter,tolerance,weights,approx) +    eta=easyeq_eta(us[j],order,rhos[j],v,maxiter,tolerance,weights,approx) +    @printf("% .15e % .15e % .15e\n",rhos[j],eta,errs[j]) +  end +end + +# 2 pt correlation function +function easyeq_2pt( +  xmin::Float64, +  xmax::Float64, +  nx::Int64, +  minlrho_init::Float64, +  nlrho_init::Int64, +  order::Int64, +  windowL::Float64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Easyeq_approx +) +  # compute gaussian quadrature weights +  weights=gausslegendre(order) + +  # compute u +  (u,E,err)= easyeq_compute_u_prevrho_error([rho],minlrho_init,nlrho_init,a0,order,v,maxiter,tolerance,weights,approx) + +  # compute useful terms +  (V,V0)=easyeq_init_v(weights,v) +  (Eta,Eta0)=easyeq_init_H(weights,v) +  (E,S,A,T,B,X)=easyeq_ESATBX(rho*u,V,V0,Eta,Eta0,weights,rho,approx) + +  # compute C2 +  for j in 1:nx +    x=xmin+(xmax-xmin)/nx*j +    C2=easyeq_C2(x,u,windowL,rho,weights,Eta,Eta0,approx,E,S,A,T,B,X) +    @printf("% .15e % .15e\n",x,C2) +  end +end + +# maximum of 2 point correlation function +function easyeq_2pt_max( +  dx::Float64, +  x0::Float64, # initial guess is x0/rho^(1/3) +  minlrho_init::Float64, +  nlrho_init::Int64, +  order::Int64, +  windowL::Float64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxstep::Float64, +  maxiter::Int64, +  tolerance::Float64, +  tolerance_max::Float64, +  approx::Easyeq_approx +) +  # compute gaussian quadrature weights +  weights=gausslegendre(order) + +  # compute u +  (u,E,err)= easyeq_compute_u_prevrho_error([rho],minlrho_init,nlrho_init,a0,order,v,maxiter,tolerance,weights,approx) + +  # compute useful terms +  (V,V0)=easyeq_init_v(weights,v) +  (Eta,Eta0)=easyeq_init_H(weights,v) + +  (x,f)=easyeq_C2_max(u,x0/rho^(1/3),dx,maxstep,maxiter,tolerance_max,windowL,rho,weights,V,V0,Eta,Eta0,approx) + +  if(x==Inf) +    @printf(stderr,"max search failed for rho=%e\n",rho) +  else +    @printf("% .15e % .15e\n",x,f) +  end +end + +# maximum of 2 point correlation function as a function of rho +function easyeq_2pt_max_rho( +  rhos::Array{Float64,1}, +  dx::Float64, +  x0::Float64, # initial guess is x0/rho^(1/3) +  minlrho_init::Float64, +  nlrho_init::Int64, +  order::Int64, +  windowL::Float64, +  a0::Float64, +  v::Function, +  maxstep::Float64, +  maxiter::Int64, +  tolerance::Float64, +  tolerance_max::Float64, +  approx::Easyeq_approx +) +  # compute gaussian quadrature weights +  weights=gausslegendre(order) + +  # compute u +  (us,es,errs)= easyeq_compute_u_prevrho_error(rhos,minlrho_init,nlrho_init,a0,order,v,maxiter,tolerance,weights,approx) + +  # compute useful terms +  (V,V0)=easyeq_init_v(weights,v) +  (Eta,Eta0)=easyeq_init_H(weights,v) + +  # save result from each task +  xs=Array{Float64,1}(undef,length(rhos)) +  fs=Array{Float64,1}(undef,length(rhos)) + +  # spawn workers +  work=spawn_workers(length(rhos)) + +  count=0 +  # for each worker +  @sync for p in 1:length(work) +    # for each task +    @async for j in work[p] +      count=count+1 +      if count>=length(work) +        progress(count,length(rhos),10000) +      end +      # run the task +      (xs[j],fs[j])=remotecall_fetch(easyeq_C2_max,workers()[p],us[j],x0/rhos[j]^(1/3),dx,maxstep,maxiter,tolerance_max,windowL,rhos[j],weights,V,V0,Eta,Eta0,approx) +    end +  end + +  for j in 1:length(rhos) +    if(xs[j]==Inf) +      @printf(stderr,"max search failed for rho=%e\n",rhos[j]) +    else +      @printf("% .15e % .15e % .15e\n",rhos[j],xs[j],fs[j]) +    end +  end +end + + +# Fourier transform of 2 pt correlation function +function easyeq_2pt_fourier( +  kmin::Float64, +  kmax::Float64, +  nk::Int64, +  minlrho_init::Float64, +  nlrho_init::Int64, +  order::Int64, +  windowL::Float64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Easyeq_approx +) +  # compute gaussian quadrature weights +  weights=gausslegendre(order) + +  # compute u +  (u,E,err)= easyeq_compute_u_prevrho_error([rho],minlrho_init,nlrho_init,a0,order,v,maxiter,tolerance,weights,approx) -    @printf("% .15e % .15e % .15e\n",rhos[j],eta,err) +  # compute useful terms +  (V,V0)=easyeq_init_v(weights,v) +  (Eta,Eta0)=easyeq_init_H(weights,v) +  (E,S,A,T,B,X)=easyeq_ESATBX(rho*u,V,V0,Eta,Eta0,weights,rho,approx) + +  # compute C2 +  for j in 1:nk +    k=kmin+(kmax-kmin)/nk*j +    C2=easyeq_C2_fourier(k,u,windowL,rho,weights,Eta,Eta0,approx,E,S,A,T,B,X) +    @printf("% .15e % .15e\n",k,C2)    end  end +# maximum of Fourier transform of 2 point correlation function +function easyeq_2pt_fourier_max( +  dk::Float64, +  k0::Float64, # initial guess is k0*rho^(1/3) +  minlrho_init::Float64, +  nlrho_init::Int64, +  order::Int64, +  windowL::Float64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxstep::Float64, +  maxiter::Int64, +  tolerance::Float64, +  tolerance_max::Float64, +  approx::Easyeq_approx +) +  # compute gaussian quadrature weights +  weights=gausslegendre(order) + +  # compute u +  (u,E,err)= easyeq_compute_u_prevrho_error([rho],minlrho_init,nlrho_init,a0,order,v,maxiter,tolerance,weights,approx) -# initialize u -@everywhere function easyeq_init_u(a0,order,weights) +  # compute useful terms +  (V,V0)=easyeq_init_v(weights,v) +  (Eta,Eta0)=easyeq_init_H(weights,v) + +  (k,f)=easyeq_C2_fourier_max(u,k0*rho^(1/3),dk,maxstep,maxiter,tolerance_max,windowL,rho,weights,V,V0,Eta,Eta0,approx) + +  if(k==Inf) +    @printf(stderr,"max search failed for rho=%e\n",rho) +  else +    @printf("% .15e % .15e\n",k,f) +  end +end + +# maximum of Fourier transform of 2 point correlation function as a function of rho +function easyeq_2pt_fourier_max_rho( +  rhos::Array{Float64,1}, +  dk::Float64, +  k0::Float64, # initial guess is k0*rho^(1/3) +  minlrho_init::Float64, +  nlrho_init::Int64, +  order::Int64, +  windowL::Float64, +  a0::Float64, +  v::Function, +  maxstep::Float64, +  maxiter::Int64, +  tolerance::Float64, +  tolerance_max::Float64, +  approx::Easyeq_approx +) +  # compute gaussian quadrature weights +  weights=gausslegendre(order) + +  # compute u +  (us,es,errs)= easyeq_compute_u_prevrho_error(rhos,minlrho_init,nlrho_init,a0,order,v,maxiter,tolerance,weights,approx) + +  # compute useful terms +  (V,V0)=easyeq_init_v(weights,v) +  (Eta,Eta0)=easyeq_init_H(weights,v) + +  # save result from each task +  ks=Array{Float64,1}(undef,length(rhos)) +  fs=Array{Float64,1}(undef,length(rhos)) + +  # spawn workers +  work=spawn_workers(length(rhos)) + +  count=0 +  # for each worker +  @sync for p in 1:length(work) +    # for each task +    @async for j in work[p] +      count=count+1 +      if count>=length(work) +        progress(count,length(rhos),10000) +      end +      # run the task +      (ks[j],fs[j])=remotecall_fetch(easyeq_C2_fourier_max,workers()[p],us[j],k0*rhos[j]^(1/3),dk,maxstep,maxiter,tolerance_max,windowL,rhos[j],weights,V,V0,Eta,Eta0,approx) +    end +  end + +  for j in 1:length(rhos) +    if(ks[j]==Inf) +      @printf(stderr,"max search failed for rho=%e\n",rhos[j]) +    else +      @printf("% .15e % .15e % .15e\n",rhos[j],ks[j],fs[j]) +    end +  end +end + +# momentum distribution +function easyeq_momentum_distribution( +  kmin::Float64, +  kmax::Float64, +  minlrho_init::Float64, +  nlrho_init::Int64, +  order::Int64, +  windowL::Float64, #L=windowL/k^2 +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  approx::Easyeq_approx +) +  # compute gaussian quadrature weights +  weights=gausslegendre(order) + +  # compute u +  (u,E,err)= easyeq_compute_u_prevrho_error([rho],minlrho_init,nlrho_init,a0,order,v,maxiter,tolerance,weights,approx) + +  # compute useful terms +  (V,V0)=easyeq_init_v(weights,v) +  (Eta,Eta0)=easyeq_init_H(weights,v) +  (E,S,A,T,B,X)=easyeq_ESATBX(rho*u,V,V0,Eta,Eta0,weights,rho,approx) +  # dXi/dlambda without the delta function and u +  dXidlambda=(dotPhi(B.*T./((X.+1).^2))./(2*(X.+1))+B.*T./(2*(X.+1).^3).*dotdPhi(B.*T./(X.+1).^2))./A*(16*pi^3) + +  dXi=inv(easyeq_dXi(rho*u,Eta,Eta0,weights,rho,approx,E,S,A,T,B,X)) + +  # compute momentum distribution +  for j in 1:order +    q=(1-weights[1][j])/(1+weights[1][j]) +    # drop if not in k interval +    if q<kmin || q>kmax +      continue +    end + +    # delta(k_i,q) +    delta=Array{Float64,1}(undef,order) +    L=windowL/q^2 +    for i in 1:order +      k=(1-weights[1][i])/(1+weights[1][i]) +      delta[i]=(1.)/(2*k*q*L)*(gaussian(k-q,(1.)/L)-gaussian(k+q,(1.)/L)) +    end + +    # du/dlambda +    du=-dXi*(dXidlambda.*delta*u[j]) +    # rescale u +    du=du/rho + +    # compute M +    M=-integrate_legendre_sampled(y->(1-y)/y^3,Eta0.*du,0.,1.,weights)*rho/(16*pi^3) + +    @printf("% .15e % .15e\n",q,M) +  end +end + + +# initialize u from scattering solution +@everywhere function easyeq_init_u( +  a0::Float64, +  order::Int64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}} +)    u=zeros(Float64,order)    for j in 1:order      # transformed k @@ -150,8 +517,100 @@ end    return u  end +# compute u for an array of rhos +# use scattering solution for the first one, and the previous rho for the others +@everywhere function easyeq_compute_u_rho( +  rhos::Array{Float64,1}, +  a0::Float64, +  order::Int64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  approx::Easyeq_approx +) +  us=Array{Array{Float64,1}}(undef,length(rhos)) +  es=Array{Float64,1}(undef,length(rhos)) +  errs=Array{Float64,1}(undef,length(rhos)) + +  (us[1],es[1],errs[1])=easyeq_hatu(easyeq_init_u(a0,order,weights),order,rhos[1],v,maxiter,tolerance,weights,approx) +  for j in 2:length(rhos) +    (us[j],es[j],errs[j])=easyeq_hatu(us[j-1],order,rhos[j],v,maxiter,tolerance,weights,approx) +  end + +  return (us,es,errs) +end + +# compute u for an array of rhos +# start from a smaller rho and work up to rhos[1] +@everywhere function easyeq_compute_u_prevrho( +  rhos::Array{Float64,1}, +  minlrho_init::Float64, +  nlrho_init::Int64, +  a0::Float64, +  order::Int64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  approx::Easyeq_approx +) + +  # only work up to rhos[1] if nlrho_init>0 +  if nlrho_init>0 +    rhos_init=Array{Float64,1}(undef,nlrho_init) +    for j in 0:nlrho_init-1 +      rhos_init[j+1]=(nlrho_init==1 ? 10^minlrho_init : 10^(minlrho_init+(log10(rhos[1])-minlrho_init)/(nlrho_init-1)*j)) +    end +    append!(rhos_init,rhos) +  # start from rhos[1] if nlrho_init=0 +  else +    rhos_init=rhos +  end +  (us,es,errs)=easyeq_compute_u_rho(rhos_init,a0,order,v,maxiter,tolerance,weights,approx) + +  # return a single value if there was a single input +  if length(rhos)==1 +    return (us[nlrho_init+1],es[nlrho_init+1],errs[nlrho_init+1]) +  else +    return (us[nlrho_init+1:length(us)],es[nlrho_init+1:length(es)],errs[nlrho_init+1:length(errs)]) +  end +end +# with error message if the computation failed to be accurate enough +@everywhere function easyeq_compute_u_prevrho_error( +  rhos::Array{Float64,1}, +  minlrho_init::Float64, +  nlrho_init::Int64, +  a0::Float64, +  order::Int64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  approx::Easyeq_approx +) +  (us,es,errs)=easyeq_compute_u_prevrho(rhos,minlrho_init,nlrho_init,a0,order,v,maxiter,tolerance,weights,approx) +  # check errs +  for j in 1:length(errs) +    if errs[j]>tolerance +      print(stderr,"warning: computation of u failed for rho=",rhos[j],"\n") +    end +  end +  return (us,es,errs) +end + +  # \hat u(k) computed using Newton -@everywhere function easyeq_hatu(u0,order,rho,v,maxiter,tolerance,weights,approx) +@everywhere function easyeq_hatu( +  u0::Array{Float64,1}, +  order::Int64, +  rho::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  approx::Easyeq_approx +)    # initialize V and Eta    (V,V0)=easyeq_init_v(weights,v)    (Eta,Eta0)=easyeq_init_H(weights,v) @@ -162,7 +621,8 @@ end    # iterate    err=Inf    for i in 1:maxiter-1 -    new=u-inv(easyeq_dXi(u,V,V0,Eta,Eta0,weights,rho,approx))*easyeq_Xi(u,V,V0,Eta,Eta0,weights,rho,approx) +    (E,S,A,T,B,X)=easyeq_ESATBX(u,V,V0,Eta,Eta0,weights,rho,approx) +    new=u-inv(easyeq_dXi(u,Eta,Eta0,weights,rho,approx,E,S,A,T,B,X))*easyeq_Xi(u,order,S,A,T,B,X)      err=norm(new-u)/norm(u)      if(err<tolerance) @@ -176,15 +636,23 @@ end  end  # \Eta -@everywhere function easyeq_H(x,t,weights,v) -  return (x>t ? 2*t/x : 2)* integrate_legendre(y->2*pi*((x+t)*y+abs(x-t)*(1-y))*v((x+t)*y+abs(x-t)*(1-y)),0,1,weights) +@everywhere function easyeq_H( +  x::Float64, +  t::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  v::Function +) +  return (x>t ? 2*t/x : 2)* integrate_legendre(y->2*pi*((x+t)*y+abs(x-t)*(1-y))*v((x+t)*y+abs(x-t)*(1-y)),0.,1.,weights)  end  # initialize V -@everywhere function easyeq_init_v(weights,v) +@everywhere function easyeq_init_v( +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  v::Function +)    order=length(weights[1]) -  V=Array{Float64}(undef,order) -  V0=v(0) +  V=Array{Float64,1}(undef,order) +  V0=v(0.)    for i in 1:order      k=(1-weights[1][i])/(1+weights[1][i])      V[i]=v(k) @@ -193,29 +661,58 @@ end  end  # initialize Eta -@everywhere function easyeq_init_H(weights,v) +@everywhere function easyeq_init_H( +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  v::Function +)    order=length(weights[1]) -  Eta=Array{Array{Float64}}(undef,order) -  Eta0=Array{Float64}(undef,order) +  Eta=Array{Array{Float64,1},1}(undef,order) +  Eta0=Array{Float64,1}(undef,order)    for i in 1:order      k=(1-weights[1][i])/(1+weights[1][i]) -    Eta[i]=Array{Float64}(undef,order) +    Eta[i]=Array{Float64,1}(undef,order)      for j in 1:order        y=(weights[1][j]+1)/2        Eta[i][j]=easyeq_H(k,(1-y)/y,weights,v)      end      y=(weights[1][i]+1)/2 -    Eta0[i]=easyeq_H(0,(1-y)/y,weights,v) +    Eta0[i]=easyeq_H(0.,(1-y)/y,weights,v)    end    return(Eta,Eta0)  end  # Xi(u) -@everywhere function easyeq_Xi(u,V,V0,Eta,Eta0,weights,rho,approx) +@everywhere function easyeq_Xi( +  u::Array{Float64,1}, +  order::Int64, +  S::Array{Float64,1}, +  A::Array{Float64,1}, +  T::Array{Float64,1}, +  B::Array{Float64,1}, +  X::Array{Float64,1} +) +  return u.-T./(2*(X.+1)).*dotPhi(B.*T./(X.+1).^2) +end + +# compute E,S,A,T,B,X +@everywhere function easyeq_ESATBX( +  u::Array{Float64,1}, +  V::Array{Float64,1}, +  V0::Float64, +  Eta::Array{Array{Float64,1},1}, +  Eta0::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  rho::Float64, +  approx::Easyeq_approx +)    order=length(weights[1])    # init -  out=zeros(Float64,order) +  S=zeros(Float64,order) +  A=zeros(Float64,order) +  T=zeros(Float64,order) +  B=zeros(Float64,order) +  X=zeros(Float64,order)    # compute E before running the loop    E=easyeq_en(u,V0,Eta0,rho,weights) @@ -224,188 +721,359 @@ end      # k_i      k=(1-weights[1][i])/(1+weights[1][i])      # S_i -    S=V[i]-1/(rho*(2*pi)^3)*integrate_legendre_sampled(y->(1-y)/y^3,Eta[i].*u,0,1,weights) +    S[i]=V[i]-1/(rho*(2*pi)^3)*integrate_legendre_sampled(y->(1-y)/y^3,Eta[i].*u,0.,1.,weights)      # A_K,i -    A=0. +    A[i]=0.      if approx.bK!=0. -      A+=approx.bK*S +      A[i]+=approx.bK*S[i]      end      if approx.bK!=1. -      A+=(1-approx.bK)*E +      A[i]+=(1-approx.bK)*E      end -    # T +    # T_i      if approx.bK==1. -      T=1. +      T[i]=1.      else -      T=S/A +      T[i]=S[i]/A[i]      end -    # B +    # B_i      if approx.bK==approx.bL -      B=1. +      B[i]=1.      else -      B=(approx.bL*S+(1-approx.bL*E))/(approx.bK*S+(1-approx.bK*E)) +      B[i]=(approx.bL*S[i]+(1-approx.bL*E))/(approx.bK*S[i]+(1-approx.bK*E))      end      # X_i -    X=k^2/(2*A*rho) - -    # U_i -    out[i]=u[i]-T/(2*(X+1))*Phi(B*T/(X+1)^2) +    X[i]=k^2/(2*A[i]*rho)    end -  return out +  return (E,S,A,T,B,X)  end  # derivative of Xi -@everywhere function easyeq_dXi(u,V,V0,Eta,Eta0,weights,rho,approx) +@everywhere function easyeq_dXi( +  u::Array{Float64,1}, +  Eta::Array{Array{Float64,1},1}, +  Eta0::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  rho::Float64, +  approx::Easyeq_approx, +  E::Float64, +  S::Array{Float64,1}, +  A::Array{Float64,1}, +  T::Array{Float64,1}, +  B::Array{Float64,1}, +  X::Array{Float64,1} +)    order=length(weights[1])    # init    out=zeros(Float64,order,order) -  # compute E before the loop -  E=easyeq_en(u,V0,Eta0,rho,weights) -    for i in 1:order      # k_i      k=(1-weights[1][i])/(1+weights[1][i]) -    # S_i -    S=V[i]-1/(rho*(2*pi)^3)*integrate_legendre_sampled(y->(1-y)/y^3,Eta[i].*u,0,1,weights) - -    # A_K,i -    A=0. -    if approx.bK!=0. -      A+=approx.bK*S -    end -    if approx.bK!=1. -      A+=(1-approx.bK)*E -    end - -    # T -    if approx.bK==1. -      T=1. -    else -      T=S/A -    end - -    # B -    if approx.bK==approx.bL -      B=1. -    else -      B=(approx.bL*S+(1-approx.bL*E))/(approx.bK*S+(1-approx.bK*E)) -    end - -    # X_i -    X=k^2/(2*A*rho)      for j in 1:order        y=(weights[1][j]+1)/2        dS=-1/rho*(1-y)*Eta[i][j]/(2*(2*pi)^3*y^3)*weights[2][j]        dE=-1/rho*(1-y)*Eta0[j]/(2*(2*pi)^3*y^3)*weights[2][j] +      dU=(i==j ? 1. : 0.) -      # dA -      dA=0. -      if approx.bK!=0. -	dA+=approx.bK*dS -      end -      if approx.bK!=1. -	dA+=(1-approx.bK)*dE -      end +      out[i,j]=easyeq_dXi_of_dSdEdU(k,dS,dE,dU,E,S[i],A[i],T[i],B[i],X[i],rho,approx) +    end +  end +   +  return out +end -      # dT -      if approx.bK==1. -	dT=0. -      else -	dT=(1-approx.bK)*(E*dS-S*dE)/A^2 -      end +# dXi given dS, dE and dU +@everywhere function easyeq_dXi_of_dSdEdU( +  k::Float64, +  dS::Float64, +  dE::Float64, +  dU::Float64, +  E::Float64, +  S::Float64, +  A::Float64, +  T::Float64, +  B::Float64, +  X::Float64, +  rho::Float64, +  approx::Easyeq_approx +) +  # dA +  dA=0. +  if approx.bK!=0. +    dA+=approx.bK*dS +  end +  if approx.bK!=1. +    dA+=(1-approx.bK)*dE +  end -      # dB -      if approx.bK==approx.bL -	dB=0. -      else -	dB=(approx.bL*(1-approx.bK)-approx.bK*(1-approx.bL))*(E*dS-S*dE)/(approx.bK*S+(1-approx.bK*E))^2 -      end +  # dT,dB +  # nothing to do if bK=bL=1 +  if approx.bK!=1. || approx.bK!=approx.bL +    dB=(E*dS-S*dE)/A^2 +  end +  if approx.bK==1. +    dT=0. +  else +    dT=(1-approx.bK)*dB +  end +  if approx.bK==approx.bL +    dB=0. +  else +    dB=(approx.bL*(1-approx.bK)-approx.bK*(1-approx.bL))*dB +  end -      dX=-k^2/(2*A^2*rho)*dA +  dX=-k^2/(2*A^2*rho)*dA -      out[i,j]=(i==j ? 1 : 0)-(dT-T*dX/(X+1))/(2*(X+1))*Phi(B*T/(X+1)^2)-T/(2*(X+1)^3)*(B*dT+T*dB-2*B*T*dX/(X+1))*dPhi(B*T/(X+1)^2) -    end +  return dU-(dT-T*dX/(X+1))/(2*(X+1))*Phi(B*T/(X+1)^2)-T/(2*(X+1)^3)*(B*dT+T*dB-2*B*T*dX/(X+1))*dPhi(B*T/(X+1)^2) +end + +# derivative of Xi with respect to mu +@everywhere function easyeq_dXidmu( +  u::Array{Float64,1}, +  order::Int64, +  rho::Float64, +  A::Array{Float64,1}, +  T::Array{Float64,1}, +  B::Array{Float64,1}, +  X::Array{Float64,1} +) +  # init +  out=zeros(Float64,order) +  for i in 1:order +    out[i]=T[i]/(2*rho*A[i]*(X[i]+1)^2)*Phi(B[i]*T[i]/(X[i]+1)^2)+B[i]*T[i]^2/(rho*A[i]*(X[i]+1)^4)*dPhi(B[i]*T[i]/(X[i]+1)^2)    end    return out  end -# derivative of Xi with respect to mu -@everywhere function easyeq_dXidmu(u,V,V0,Eta,Eta0,weights,rho,approx) +# energy +@everywhere function easyeq_en( +  u::Array{Float64,1}, +  V0::Float64, +  Eta0::Array{Float64,1}, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}} +) +  return V0-1/(rho*(2*pi)^3)*integrate_legendre_sampled(y->(1-y)/y^3,Eta0.*u,0.,1.,weights) +end + +# condensate fraction +@everywhere function easyeq_eta( +  u::Array{Float64,1}, +  order::Int64, +  rho::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  approx::Easyeq_approx +) +  (V,V0)=easyeq_init_v(weights,v) +  (Eta,Eta0)=easyeq_init_H(weights,v) + +  (E,S,A,T,B,X)=easyeq_ESATBX(rho*u,V,V0,Eta,Eta0,weights,rho,approx) +  du=-inv(easyeq_dXi(rho*u,Eta,Eta0,weights,rho,approx,E,S,A,T,B,X))*easyeq_dXidmu(rho*u,order,rho,A,T,B,X) + +  eta=-1/(2*(2*pi)^3)*integrate_legendre_sampled(y->(1-y)/y^3,Eta0.*du,0.,1.,weights) + +  return eta +end + +# inverse Fourier transform +@everywhere function easyeq_u_x( +  x::Float64, +  u::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}} +) +  order=length(weights[1]) +  out=integrate_legendre_sampled(y->(1-y)/y^3*sin(x*(1-y)/y)/x/(2*pi^2),u,0.,1.,weights) +  return out +end + + +# correlation function +@everywhere function easyeq_C2( +  x::Float64, +  u::Array{Float64,1}, +  windowL::Float64, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  Eta::Array{Array{Float64,1},1}, +  Eta0::Array{Float64,1}, +  approx::Easyeq_approx, +  E::Float64, +  S::Array{Float64,1}, +  A::Array{Float64,1}, +  T::Array{Float64,1}, +  B::Array{Float64,1}, +  X::Array{Float64,1} +) +  g=(r,x)->(r>0. ? sin(r*x)/(r*x)*hann(r,windowL) : hann(r,windowL)) +  (dEta,dEta0)=easyeq_init_H(weights,k->g(k,x)) +  du=easyeq_dudv(g,x,u,rho,weights,Eta,Eta0,dEta,dEta0,approx,E,S,A,T,B,X) + +  return rho^2*(1-integrate_legendre_sampled(y->(1-y)/y^3,dEta0.*u+Eta0.*du,0.,1.,weights)/(8*pi^3)) +end + +# derivative of u with respect to v in direction g +@everywhere function easyeq_dudv( +  g::Function,# should be of the form g(k,x) where x is a parameter +  x::Float64, +  u::Array{Float64,1}, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  Eta::Array{Array{Float64,1},1}, +  Eta0::Array{Float64,1}, +  dEta::Array{Array{Float64,1},1}, +  dEta0::Array{Float64,1}, +  approx::Easyeq_approx, +  E::Float64, +  S::Array{Float64,1}, +  A::Array{Float64,1}, +  T::Array{Float64,1}, +  B::Array{Float64,1}, +  X::Array{Float64,1} +) +  # initialize dV and dEta +  (dV,dV0)=easyeq_init_v(weights,k->g(k,x)) + +  du=-inv(easyeq_dXi(rho*u,Eta,Eta0,weights,rho,approx,E,S,A,T,B,X))*easyeq_dXidv(rho*u,dV,dV0,dEta,dEta0,weights,rho,approx,E,S,A,T,B,X) +  # rescale rho +  du=du/rho + +  return du +end + +# derivative of Xi with respect to potential +@everywhere function easyeq_dXidv( +  u::Array{Float64,1}, +  dv::Array{Float64,1}, +  dv0::Float64, +  dEta::Array{Array{Float64,1},1}, +  dEta0::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  rho::Float64, +  approx::Easyeq_approx, +  E::Float64, +  S::Array{Float64,1}, +  A::Array{Float64,1}, +  T::Array{Float64,1}, +  B::Array{Float64,1}, +  X::Array{Float64,1} +) +    order=length(weights[1])    # init    out=zeros(Float64,order) -  # compute E before running the loop -  E=easyeq_en(u,V0,Eta0,rho,weights) -    for i in 1:order      # k_i      k=(1-weights[1][i])/(1+weights[1][i]) -    # S_i -    S=V[i]-1/(rho*(2*pi)^3)*integrate_legendre_sampled(y->(1-y)/y^3,Eta[i].*u,0,1,weights) -    # A_K,i -    A=0. -    if approx.bK!=0. -      A+=approx.bK*S -    end -    if approx.bK!=1. -      A+=(1-approx.bK)*E +    dS=dv[i] +    dE=dv0 +    for j in 1:order +      y=(weights[1][j]+1)/2 +      dS+=-1/rho*(1-y)*u[j]*dEta[i][j]/(2*(2*pi)^3*y^3)*weights[2][j] +      dE+=-1/rho*(1-y)*u[j]*dEta0[j]/(2*(2*pi)^3*y^3)*weights[2][j]      end -    # T -    if approx.bK==1. -      T=1. -    else -      T=S/A -    end +    out[i]=easyeq_dXi_of_dSdEdU(k,dS,dE,0.,E,S[i],A[i],T[i],B[i],X[i],rho,approx) +  end -    # B -    if approx.bK==approx.bL -      B=1. -    else -      B=(approx.bL*S+(1-approx.bL*E))/(approx.bK*S+(1-approx.bK*E)) -    end +  return out +end -    # X_i -    X=k^2/(2*A*rho) +# maximum of 2 point correlation function +@everywhere function easyeq_C2_max( +  u::Array{Float64,1}, +  x0::Float64, +  dx::Float64, +  maxstep::Float64, +  maxiter::Int64, +  tolerance::Float64, +  windowL::Float64, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  V::Array{Float64,1}, +  V0::Float64, +  Eta::Array{Array{Float64,1},1}, +  Eta0::Array{Float64,1}, +  approx::Easyeq_approx +) +  # compute some useful terms +  (E,S,A,T,B,X)=easyeq_ESATBX(rho*u,V,V0,Eta,Eta0,weights,rho,approx) -    out[i]=T/(2*rho*A*(X+1)^2)*Phi(B*T/(X+1)^2)+B*T^2/(rho*A*(X+1)^4)*dPhi(B*T/(X+1)^2) -  end +  (x,f)=newton_maximum(y->easyeq_C2(y,u,windowL,rho,weights,Eta,Eta0,approx,E,S,A,T,B,X),x0,dx,maxiter,tolerance,maxstep) -  return out +  return(x,f)  end -# energy -@everywhere function easyeq_en(u,V0,Eta0,rho,weights) -  return V0-1/(rho*(2*pi)^3)*integrate_legendre_sampled(y->(1-y)/y^3,Eta0.*u,0,1,weights) +# Fourier transform of correlation function +@everywhere function easyeq_C2_fourier( +  q::Float64, +  u::Array{Float64,1}, +  windowL::Float64, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  Eta::Array{Array{Float64,1},1}, +  Eta0::Array{Float64,1}, +  approx::Easyeq_approx, +  E::Float64, +  S::Array{Float64,1}, +  A::Array{Float64,1}, +  T::Array{Float64,1}, +  B::Array{Float64,1}, +  X::Array{Float64,1} +) +  # direction in which to differentiate u +  g=(r,x)->(r>0. ? (1.)/(2*x*r*windowL)*(gaussian(x-r,(1.)/windowL)-gaussian(x+r,(1.)/windowL)) : gaussian(x,(1.)/windowL)) +  (dEta,dEta0)=easyeq_init_H(weights,k->g(k,q)) +  du=easyeq_dudv(g,q,u,rho,weights,Eta,Eta0,dEta,dEta0,approx,E,S,A,T,B,X) + +  return rho^2*(-integrate_legendre_sampled(y->(1-y)/y^3,dEta0.*u+Eta0.*du,0.,1.,weights)/(8*pi^3))  end -# condensate fraction -@everywhere function easyeq_eta(u,order,rho,v,maxiter,tolerance,weights,approx) -  (V,V0)=easyeq_init_v(weights,v) -  (Eta,Eta0)=easyeq_init_H(weights,v) -  du=-inv(easyeq_dXi(rho*u,V,V0,Eta,Eta0,weights,rho,approx))*easyeq_dXidmu(rho*u,V,V0,Eta,Eta0,weights,rho,approx) +# maximum of Fourier transform of 2 point correlation function +@everywhere function easyeq_C2_fourier_max( +  u::Array{Float64,1}, +  k0::Float64, +  dk::Float64, +  maxstep::Float64, +  maxiter::Int64, +  tolerance::Float64, +  windowL::Float64, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  V::Array{Float64,1}, +  V0::Float64, +  Eta::Array{Array{Float64,1},1}, +  Eta0::Array{Float64,1}, +  approx::Easyeq_approx +) +  # compute some useful terms +  (E,S,A,T,B,X)=easyeq_ESATBX(rho*u,V,V0,Eta,Eta0,weights,rho,approx) -  eta=-1/(2*(2*pi)^3)*integrate_legendre_sampled(y->(1-y)/y^3,Eta0.*du,0,1,weights) +  (k,f)=newton_maximum(y->easyeq_C2_fourier(y,u,windowL,rho,weights,Eta,Eta0,approx,E,S,A,T,B,X),k0,dk,maxiter,tolerance,maxstep) -  return eta +  return (k,f)  end -# inverse Fourier transform -@everywhere function easyeq_u_x(x,u,weights) -  order=length(weights[1]) -  out=integrate_legendre_sampled(y->(1-y)/y^3*sin(x*(1-y)/y)/x/(2*pi^2),u,0,1,weights) -  return out + +@everywhere function barEta( +  q::Float64, +  y::Float64, +  t::Float64 +) +  return (t>=abs(y-q) && t<=y+q ? pi/y/q : 0.)  end diff --git a/src/integration.jl b/src/integration.jl index 9be4641..223d6cc 100644 --- a/src/integration.jl +++ b/src/integration.jl @@ -1,4 +1,4 @@ -## Copyright 2021 Ian Jauslin +## Copyright 2021-2023 Ian Jauslin  ##   ## Licensed under the Apache License, Version 2.0 (the "License");  ## you may not use this file except in compliance with the License. @@ -13,7 +13,12 @@  ## limitations under the License.  # approximate \int_a^b f using Gauss-Legendre quadratures -@everywhere function integrate_legendre(f,a,b,weights) +@everywhere function integrate_legendre( +  f::Function, +  a::Float64, +  b::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}} +)    out=0    for i in 1:length(weights[1])      out+=(b-a)/2*weights[2][i]*f((b-a)/2*weights[1][i]+(b+a)/2) @@ -21,7 +26,13 @@    return out  end  # \int f*g where g is sampled at the Legendre nodes -@everywhere function integrate_legendre_sampled(f,g,a,b,weights) +@everywhere function integrate_legendre_sampled( +  f::Function, +  g::Array{Float64,1}, +  a::Float64, +  b::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}} +)    out=0    for i in 1:length(weights[1])      out+=(b-a)/2*weights[2][i]*f((b-a)/2*weights[1][i]+(b+a)/2)*g[i] @@ -31,7 +42,12 @@ end  # approximate \int_a^b f/sqrt((b-x)(x-a)) using Gauss-Chebyshev quadratures -@everywhere function integrate_chebyshev(f,a,b,N) +@everywhere function integrate_chebyshev( +  f::Function, +  a::Float64, +  b::Float64, +  N::Int64 +)    out=0    for i in 1:N      out=out+pi/N*f((b-a)/2*cos((2*i-1)/(2*N)*pi)+(b+a)/2) @@ -40,7 +56,11 @@ end  end  # approximate \int_0^\infty dr f(r)*exp(-a*r) using Gauss-Chebyshev quadratures -@everywhere function integrate_laguerre(f,a,weights_gL) +@everywhere function integrate_laguerre( +  f::Function, +  a::Float64, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}} +)    out=0.    for i in 1:length(weights_gL[1])      out+=1/a*f(weights_gL[1][i]/a)*weights_gL[2][i] @@ -49,10 +69,28 @@ end  end  # Hann window -@everywhere function hann(x,L) +@everywhere function hann( +  x::Float64, +  L::Float64 +)    if abs(x)<L/2      return cos(pi*x/L)^2    else      return 0.    end  end +# Fourier transform (in 3d) +@everywhere function hann_fourier( +  k::Float64, +  L::Float64 +) +  return L^2*4*pi^3/k*(((k*L)^3-4*k*L*pi^2)*cos(k*L/2)-2*(3*(k*L)^2-4*pi^2)*sin(k*L/2))/((k*L)^3-4*k*L*pi^2)^2 +end + +# normalized Gaussian (in 3d) +@everywhere function gaussian( +  k::Float64, +  L::Float64 +) +  return exp(-k^2/(2*L))/sqrt(8*pi^3*L^3) +end diff --git a/src/interpolation.jl b/src/interpolation.jl index fa3bcdb..066bc20 100644 --- a/src/interpolation.jl +++ b/src/interpolation.jl @@ -1,4 +1,4 @@ -## Copyright 2021 Ian Jauslin +## Copyright 2021-2023 Ian Jauslin  ##   ## Licensed under the Apache License, Version 2.0 (the "License");  ## you may not use this file except in compliance with the License. @@ -14,7 +14,11 @@  # linear interpolation: given vectors x,y, compute a linear interpolation for y(x0)  # assume x is ordered -@everywhere function linear_interpolation(x0,x,y) +@everywhere function linear_interpolation( +  x0::Float64, +  x::Array{Float64,1}, +  y::Array{Float64,1} +)    # if x0 is beyond all x's, then return the corresponding boundary value.    if x0>x[length(x)]      return y[length(y)] @@ -28,7 +32,12 @@    # interpolate    return y[i]+(y[i+1]-y[i])*(x0-x[i])/(x[i+1]-x[i])  end -@everywhere function bracket(x0,x,a,b) +@everywhere function bracket( +  x0::Float64, +  x::Array{Float64,1}, +  a::Int64, +  b::Int64 +)    i=floor(Int64,(a+b)/2)    if x0<x[i]      return bracket(x0,x,a,i) @@ -41,15 +50,18 @@ end  # polynomial interpolation of a family of points -@everywhere function poly_interpolation(x,y) +@everywhere function poly_interpolation( +  x::Array{Float64,1}, +  y::Array{Float64,1} +)    # init for recursion -  rec=Array{Polynomial{Float64}}(undef,length(x)) +  rec=Array{Polynomial{Float64},1}(undef,length(x))    for i in 1:length(x)      rec[i]=Polynomial([1.])    end    # compute \prod (x-x_i) -  poly_interpolation_rec(rec,x,1,length(x)) +  poly_interpolation_rec(rec,x,1.,length(x))    # sum terms together    out=0. @@ -60,7 +72,12 @@ end    return out  end  # recursive helper function -@everywhere function poly_interpolation_rec(out,x,a,b) +@everywhere function poly_interpolation_rec( +  out::Array{Float64,1}, +  x::Array{Float64,1}, +  a::Float64, +  b::Float64 +)    if a==b      return    end @@ -91,7 +108,10 @@ end    return  end  ## the following does the same, but has complexity N^2, the function above has N*log(N) -#@everywhere function poly_interpolation(x,y) +#@everywhere function poly_interpolation( +#  x::Array{Float64,1}, +#  y::Array{Float64,1} +#)  #  out=Polynomial([0.])  #  for i in 1:length(x)  #    prod=Polynomial([1.]) diff --git a/src/main.jl b/src/main.jl index 382fe6b..28fc2be 100644 --- a/src/main.jl +++ b/src/main.jl @@ -1,4 +1,4 @@ -## Copyright 2021 Ian Jauslin +## Copyright 2021-2023 Ian Jauslin  ##   ## Licensed under the Apache License, Version 2.0 (the "License");  ## you may not use this file except in compliance with the License. @@ -22,6 +22,8 @@ include("chebyshev.jl")  include("integration.jl")  include("interpolation.jl")  include("tools.jl") +include("multithread.jl") +include("optimization.jl")  include("potentials.jl")  include("print.jl")  include("easyeq.jl") @@ -36,9 +38,6 @@ function main()    rho=1e-6    e=1e-4 -  # incrementally initialize Newton algorithm -  nlrho_init=1 -    # potential    v=k->v_exp(k,1.)    a0=a0_exp(1.) @@ -49,19 +48,29 @@ function main()    v_param_e=1.    # plot range when plotting in rho -  minlrho=-6 -  maxlrho=2 +  # linear +  minrho=1e-6 +  maxrho=1e2 +  nrho=0 +  # logarithmic +  minlrho=-6. +  maxlrho=2.    nlrho=100 -  rhos=Array{Float64}(undef,0) +  # list +  rhos=Array{Float64,1}(undef,0)    # plot range when plotting in e -  minle=-6 -  maxle=2 +  minle=-6. +  maxle=2.    nle=100 -  es=Array{Float64}(undef,0) +  es=Array{Float64,1}(undef,0)    # plot range when plotting in x -  xmin=0 -  xmax=100 +  xmin=0. +  xmax=100.    nx=100 +  # plot range when plotting in k +  kmin=0. +  kmax=10. +  nk=100    # cutoffs    tolerance=1e-11 @@ -77,8 +86,8 @@ function main()    J=10    # starting rho from which to incrementally initialize Newton algorithm -  # default must be set after reading rho, if not set explicitly -  minlrho_init=nothing +  minlrho_init=-6. +  nlrho_init=0    # Hann window for Fourier transforms    windowL=1e3 @@ -98,6 +107,18 @@ function main()    anyeq_compleq_approx=Anyeq_approx(1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.)    anyeq_approx=anyeq_bigeq_approx +  # numerical approximations of derivatives +  dx=1e-7 +  dk=1e-7 + +  # initial guess for 2pt_max +  x0=1. +  k0=1. +  # maximum step in 2pt_max +  maxstep=Inf +  # tolerance for max search +  tolerance_max=Inf +    # read cli arguments    (params,potential,method,savefile,command)=read_args(ARGS) @@ -109,8 +130,8 @@ function main()  	print(stderr,"error: could not read parameter '",param,"'.\n")  	exit(-1)        end -      lhs=terms[1] -      rhs=terms[2] +      lhs=string(terms[1]) +      rhs=string(terms[2])        if lhs=="rho"  	rho=parse(Float64,rhs)        elseif lhs=="minlrho_init" @@ -133,6 +154,12 @@ function main()  	maxlrho=parse(Float64,rhs)        elseif lhs=="nlrho"  	nlrho=parse(Int64,rhs) +      elseif lhs=="minrho" +	minrho=parse(Float64,rhs) +      elseif lhs=="maxrho" +	maxrho=parse(Float64,rhs) +      elseif lhs=="nrho" +	nrho=parse(Int64,rhs)        elseif lhs=="es"  	es=parse_list(rhs)        elseif lhs=="minle" @@ -147,6 +174,12 @@ function main()  	xmax=parse(Float64,rhs)        elseif lhs=="nx"  	nx=parse(Int64,rhs) +      elseif lhs=="kmin" +	kmin=parse(Float64,rhs) +      elseif lhs=="kmax" +	kmax=parse(Float64,rhs) +      elseif lhs=="nk" +	nk=parse(Int64,rhs)        elseif lhs=="P"  	P=parse(Int64,rhs)        elseif lhs=="N" @@ -155,6 +188,18 @@ function main()  	J=parse(Int64,rhs)        elseif lhs=="window_L"  	windowL=parse(Float64,rhs) +      elseif lhs=="dx" +	dx=parse(Float64,rhs) +      elseif lhs=="x0" +	x0=parse(Float64,rhs) +      elseif lhs=="dk" +	dk=parse(Float64,rhs) +      elseif lhs=="k0" +	k0=parse(Float64,rhs) +      elseif lhs=="maxstep" +	maxstep=parse(Float64,rhs) +      elseif lhs=="tolerance_max" +	tolerance_max=parse(Float64,rhs)        elseif lhs=="aK"  	anyeq_approx.aK=parse(Float64,rhs)        elseif lhs=="bK" @@ -242,37 +287,48 @@ function main()    ## set parameters    # rhos    if length(rhos)==0 -    rhos=Array{Float64}(undef,nlrho) -    for j in 0:nlrho-1 -      rhos[j+1]=(nlrho==1 ? 10^minlrho : 10^(minlrho+(maxlrho-minlrho)/(nlrho-1)*j)) +    # linear only if nrho is specified +    if nrho>0 +      rhos=Array{Float64,1}(undef,nrho) +      for j in 0:nrho-1 +	rhos[j+1]=(nrho==1 ? minrho : minrho+(maxrho-minrho)/(nrho-1)*j) +      end +    else +      rhos=Array{Float64,1}(undef,nlrho) +      for j in 0:nlrho-1 +	rhos[j+1]=(nlrho==1 ? 10^minlrho : 10^(minlrho+(maxlrho-minlrho)/(nlrho-1)*j)) +      end      end    end +    # es    if length(es)==0 -    es=Array{Float64}(undef,nle) +    es=Array{Float64,1}(undef,nle)      for j in 0:nle-1        es[j+1]=(nle==1 ? 10^minle : 10^(minle+(maxle-minle)/(nle-1)*j))      end    end -  # default minlrho_init -  if (minlrho_init==nothing) -    minlrho_init=log10(rho) -  end -    # splines -  taus=Array{Float64}(undef,J+1) +  taus=Array{Float64,1}(undef,J+1)    for j in 0:J      taus[j+1]=-1+2*j/J    end +  # tolerance_max +  if tolerance_max==Inf +    tolerance_max=tolerance +  end +    ## run command -  if method=="easyeq" +  if command=="scattering_length" +    @printf("% .15e\n",a0) +  elseif method=="easyeq"      if command=="energy"        easyeq_energy(minlrho_init,nlrho_init,order,rho,a0,v,maxiter,tolerance,easyeq_approx)      # e(rho)      elseif command=="energy_rho" -      easyeq_energy_rho(rhos,order,a0,v,maxiter,tolerance,easyeq_approx) +      easyeq_energy_rho(rhos,minlrho_init,nlrho_init,order,a0,v,maxiter,tolerance,easyeq_approx)      # u(k)      elseif command=="uk"        easyeq_uk(minlrho_init,nlrho_init,order,rho,a0,v,maxiter,tolerance,easyeq_approx) @@ -285,7 +341,28 @@ function main()      elseif command=="condensate_fraction"        easyeq_condensate_fraction(minlrho_init,nlrho_init,order,rho,a0,v,maxiter,tolerance,easyeq_approx)      elseif command=="condensate_fraction_rho" -      easyeq_condensate_fraction_rho(rhos,order,a0,v,maxiter,tolerance,easyeq_approx) +      easyeq_condensate_fraction_rho(rhos,minlrho_init,nlrho_init,order,a0,v,maxiter,tolerance,easyeq_approx) +    # 2pt correlation +    elseif command=="2pt" +      easyeq_2pt(xmin,xmax,nx,minlrho_init,nlrho_init,order,windowL,rho,a0,v,maxiter,tolerance,easyeq_approx) +    # max of 2pt correlation +    elseif command=="2pt_max" +      easyeq_2pt_max(dx,x0,minlrho_init,nlrho_init,order,windowL,rho,a0,v,maxstep,maxiter,tolerance,tolerance_max,easyeq_approx) +    # max of 2pt correlation as a function of rho +    elseif command=="2pt_max_rho" +      easyeq_2pt_max_rho(rhos,dx,x0,minlrho_init,nlrho_init,order,windowL,a0,v,maxstep,maxiter,tolerance,tolerance_max,easyeq_approx) +    # fourier transform of 2pt correlation +    elseif command=="2pt_fourier" +      easyeq_2pt_fourier(kmin,kmax,nk,minlrho_init,nlrho_init,order,windowL,rho,a0,v,maxiter,tolerance,easyeq_approx) +    # max of fourier transform of 2pt correlation +    elseif command=="2pt_fourier_max" +      easyeq_2pt_fourier_max(dk,k0,minlrho_init,nlrho_init,order,windowL,rho,a0,v,maxstep,maxiter,tolerance,tolerance_max,easyeq_approx) +    # max of 2pt correlation as a function of rho +    elseif command=="2pt_fourier_max_rho" +      easyeq_2pt_fourier_max_rho(rhos,dk,k0,minlrho_init,nlrho_init,order,windowL,a0,v,maxstep,maxiter,tolerance,tolerance_max,easyeq_approx) +    # momentum distribution +    elseif command=="momentum_distribution" +      easyeq_momentum_distribution(kmin,kmax,minlrho_init,nlrho_init,order,windowL,rho,a0,v,maxiter,tolerance,easyeq_approx)      else        print(stderr,"unrecognized command '",command,"'.\n")        exit(-1) @@ -316,7 +393,7 @@ function main()        anyeq_energy(rho,minlrho_init,nlrho_init,taus,P,N,J,a0,v,maxiter,tolerance,anyeq_approx,savefile)      # e(rho)      elseif command=="energy_rho" -      anyeq_energy_rho(rhos,taus,P,N,J,a0,v,maxiter,tolerance,anyeq_approx,savefile) +      anyeq_energy_rho(rhos,minlrho_init,nlrho_init,taus,P,N,J,a0,v,maxiter,tolerance,anyeq_approx,savefile)      elseif command=="energy_rho_init_prevrho"        anyeq_energy_rho_init_prevrho(rhos,taus,P,N,J,a0,v,maxiter,tolerance,anyeq_approx,savefile)      elseif command=="energy_rho_init_nextrho" @@ -331,12 +408,29 @@ function main()      elseif command=="condensate_fraction"        anyeq_condensate_fraction(rho,minlrho_init,nlrho_init,taus,P,N,J,a0,v,maxiter,tolerance,anyeq_approx,savefile)      elseif command=="condensate_fraction_rho" -      anyeq_condensate_fraction_rho(rhos,taus,P,N,J,a0,v,maxiter,tolerance,anyeq_approx,savefile) +      anyeq_condensate_fraction_rho(rhos,minlrho_init,nlrho_init,taus,P,N,J,a0,v,maxiter,tolerance,anyeq_approx,savefile)      # momentum distribution      elseif command=="momentum_distribution" -      anyeq_momentum_distribution(rho,minlrho_init,nlrho_init,taus,P,N,J,a0,v,maxiter,tolerance,anyeq_approx,savefile) +      anyeq_momentum_distribution(kmin,kmax,rho,minlrho_init,nlrho_init,taus,P,N,J,windowL,a0,v,maxiter,tolerance,anyeq_approx,savefile)      elseif command=="2pt"        anyeq_2pt_correlation(minlrho_init,nlrho_init,taus,P,N,J,windowL,rho,a0,v,maxiter,tolerance,xmin,xmax,nx,anyeq_approx,savefile) +    elseif command=="2pt_max" +      anyeq_2pt_correlation_max(rho,minlrho_init,nlrho_init,dx,x0,maxstep,taus,P,N,J,windowL,a0,v,maxiter,tolerance,tolerance_max,anyeq_approx,savefile) +    elseif command=="2pt_max_rho" +      anyeq_2pt_correlation_max_rho(rhos,minlrho_init,nlrho_init,dx,x0,maxstep,taus,P,N,J,windowL,a0,v,maxiter,tolerance,tolerance_max,anyeq_approx,savefile) +    elseif command=="2pt_fourier" +      anyeq_2pt_correlation_fourier(minlrho_init,nlrho_init,taus,P,N,J,windowL,rho,a0,v,maxiter,tolerance,kmin,kmax,nk,anyeq_approx,savefile) +    elseif command=="2pt_fourier_test" +      anyeq_2pt_correlation_fourier_test(minlrho_init,nlrho_init,taus,P,N,J,windowL,rho,a0,v,maxiter,tolerance,xmax,kmin,kmax,nk,anyeq_approx,savefile) +    elseif command=="2pt_fourier_max" +      anyeq_2pt_correlation_fourier_max(rho,minlrho_init,nlrho_init,dk,k0,maxstep,taus,P,N,J,windowL,a0,v,maxiter,tolerance,tolerance_max,anyeq_approx,savefile) +    elseif command=="2pt_fourier_max_rho" +      anyeq_2pt_correlation_fourier_max_rho(rhos,minlrho_init,nlrho_init,dk,k0,maxstep,taus,P,N,J,windowL,a0,v,maxiter,tolerance,tolerance_max,anyeq_approx,savefile) +    elseif command=="uncondensed_2pt" +      anyeq_uncondensed_2pt_correlation(minlrho_init,nlrho_init,taus,P,N,J,windowL,rho,a0,v,maxiter,tolerance,xmin,xmax,nx,anyeq_approx,savefile) +    # compressibility +    elseif command=="compressibility_rho" +      anyeq_compressibility_rho(rhos,minlrho_init,nlrho_init,taus,P,N,J,a0,v,maxiter,tolerance,anyeq_approx,savefile)      else        print(stderr,"unrecognized command: '",command,"'\n")        exit(-1) @@ -360,9 +454,11 @@ function main()  end  # parse a comma separated list as an array of Float64 -function parse_list(str) +function parse_list( +  str::String +)    elems=split(str,",") -  out=Array{Float64}(undef,length(elems)) +  out=Array{Float64,1}(undef,length(elems))    for i in 1:length(elems)      out[i]=parse(Float64,elems[i])    end @@ -370,7 +466,9 @@ function parse_list(str)  end  # read cli arguments -function read_args(ARGS) +function read_args( +  ARGS +)    # flag    flag="" diff --git a/src/multithread.jl b/src/multithread.jl new file mode 100644 index 0000000..f61cdd7 --- /dev/null +++ b/src/multithread.jl @@ -0,0 +1,16 @@ +# split up 1...n among workers +function spawn_workers(n::Int64) +  # number of workers +  nw=nworkers() +  # split jobs among workers +  work=Array{Array{Int64,1},1}(undef,nw) +  # init empty arrays +  for p in 1:nw +    work[p]=Int64[] +  end +  for i in 1:n +    append!(work[(i-1)%nw+1],[i]) +  end + +  return work +end diff --git a/src/optimization.jl b/src/optimization.jl new file mode 100644 index 0000000..bacead7 --- /dev/null +++ b/src/optimization.jl @@ -0,0 +1,94 @@ +# gradient descent: find local minimum of function of one variable from initial guess +# numerically estimate the derivative +@everywhere function gradient_descent( +  f::Function, +  x0::Float64, +  delta::Float64, # shift is delta*df +  dx::Float64, # finite difference for numerical derivative evaluation +  maxiter::Int64 # interrupt and fail after maxiter steps +) +  counter=0 + +  # init +  x=x0 + +  while counter<maxiter +    # value at x and around +    val=f(x) +    valm=f(x-dx) +    valp=f(x+dx) +    # quit if minimum +    if(val<valm && val<valp) +      return(x,val) +    end + +    # derivative +    df=(valp-val)/dx +    # step +    x=x-delta*df +    counter+=1 +  end + +  # fail +  return(Inf,Inf) +end + +# Newton algorithm to compute extrema +# numerically estimate the derivatives +@everywhere function newton_maximum( +  f::Function, +  x0::Float64, +  dx::Float64, # finite difference for numerical derivative evaluation +  maxiter::Int64, +  tolerance::Float64, +  maxstep::Float64 # maximal size of step +) +  counter=0 + +  # init +  x=x0 + +  while counter<maxiter +    # value at x and around +    val=f(x) +    valm=f(x-dx) +    valp=f(x+dx) + +    # derivative +    dfp=(valp-val)/dx +    dfm=(val-valm)/dx +    # second derivative +    ddf=(dfp-dfm)/dx + +    #@printf(stderr,"% .15e % .15e % .15e % .15e\n",x,val,dfp,ddf) + +    if abs(dfp/ddf)<tolerance +      # check it is a local maximum +      if ddf<0 +	return(x,val) +      else +	return(Inf,Inf) +      end +    end + +    # step +    step=dfp/abs(ddf) + +    # step too large +    if abs(step)>maxstep +      step=maxstep*sign(step) +    end + +    x=x+step + +    # fail if off to infinity +    if x==Inf || x==-Inf +      return(x,val) +    end +    counter+=1 +  end + +  # fail +  return(Inf,Inf) +end + diff --git a/src/potentials.jl b/src/potentials.jl index 46cafc0..b480db0 100644 --- a/src/potentials.jl +++ b/src/potentials.jl @@ -1,4 +1,4 @@ -## Copyright 2021 Ian Jauslin +## Copyright 2021-2023 Ian Jauslin  ##   ## Licensed under the Apache License, Version 2.0 (the "License");  ## you may not use this file except in compliance with the License. @@ -13,10 +13,15 @@  ## limitations under the License.  # exponential potential in 3 dimensions -@everywhere function v_exp(k,a) +@everywhere function v_exp( +  k::Float64, +  a::Float64 +)    return 8*pi/(1+k^2)^2*a  end -@everywhere function a0_exp(a) +@everywhere function a0_exp( +  a::Float64 +)    if a>0.      return log(a)+2*MathConstants.eulergamma+2*besselk(0,2*sqrt(a))/besseli(0,2*sqrt(a))    elseif a<0. @@ -27,15 +32,24 @@ end  end  # exp(-x)-a*exp(-b*x) in 3 dimensions -@everywhere function v_expcry(k,a,b) +@everywhere function v_expcry( +  k::Float64, +  a::Float64, +  b::Float64 +)    return 8*pi*((1+k^2)^(-2)-a*b*(b^2+k^2)^(-2))  end -@everywhere function a0_expcry(a,b) +@everywhere function a0_expcry( +  a::Float64, +  b::Float64 +)    return 1.21751642717932720441274114683413710125487579284827462 #ish  end  # x^2*exp(-|x|) in 3 dimensions -@everywhere function v_npt(k) +@everywhere function v_npt( +  k::Float64 +)    return 96*pi*(1-k^2)/(1+k^2)^4  end  @everywhere function a0_npt() @@ -43,7 +57,9 @@ end  end  # 1/(1+x^4/4) potential in 3 dimensions -@everywhere function v_alg(k) +@everywhere function v_alg( +  k::Float64 +)    if(k==0)      return 4*pi^2    else @@ -53,32 +69,50 @@ end  a0_alg=1. #ish  # (1+a x^4)/(1+x^2)^4 potential in 3 dimensions -@everywhere function v_algwell(k) +@everywhere function v_algwell( +  k::Float64 +)    a=4    return pi^2/24*exp(-k)*(a*(k^2-9*k+15)+k^2+3*k+3)  end  a0_algwell=1. #ish  # potential corresponding to the exact solution c/(1+b^2x^2)^2 -@everywhere function v_exact(k,b,c,e) +@everywhere function v_exact( +  k::Float64, +  b::Float64, +  c::Float64, +  e::Float64 +)    if k!=0      return 48*pi^2*((18+3*sqrt(c)-(4-3*e/b^2)*c-(1-2*e/b^2)*c^1.5)/(4*(3+sqrt(c))^2*sqrt(c))*exp(-sqrt(1-sqrt(c))*k/b)+(-18+3*sqrt(c)+(4-3*e/b^2)*c-(1-2*e/b^2)*c^1.5)/(4*(3-sqrt(c))^2*sqrt(c))*exp(-sqrt(1+sqrt(c))*k/b)+(1-k/b)/2*exp(-k/b)-c*e/b^2*(3*(9-c)*k/b+8*c)/(8*(9-c)^2)*exp(-2*k/b))/k    else      return 48*pi^2*(-sqrt(1-sqrt(c))/b*(18+3*sqrt(c)-(4-3*e/b^2)*c-(1-2*e/b^2)*c^1.5)/(4*(3+sqrt(c))^2*sqrt(c))-sqrt(1+sqrt(c))/b*(-18+3*sqrt(c)+(4-3*e/b^2)*c-(1-2*e/b^2)*c^1.5)/(4*(3-sqrt(c))^2*sqrt(c))-1/b-c*e/b^2*(27-19*c)/(8*(9-c)^2))    end  end -@everywhere function a0_exact(b,c,e) +@everywhere function a0_exact( +  b::Float64, +  c::Float64, +  e::Float64 +)    return 1. #ish  end  # tent potential (convolution of soft sphere with itself): a*pi/12*(2*|x|/b-2)^2*(2*|x|/b+4) for |x|<b -@everywhere function v_tent(k,a,b) +@everywhere function v_tent( +  k::Float64, +  a::Float64, +  b::Float64 +)    if k!=0      return (b/2)^3*a*(4*pi*(sin(k*b/2)-k*b/2*cos(k*b/2))/(k*b/2)^3)^2    else      return (b/2)^3*a*(4*pi/3)^2    end  end -@everywhere function a0_tent(a,b) +@everywhere function a0_tent( +  a::Float64, +  b::Float64 +)    return b #ish  end diff --git a/src/print.jl b/src/print.jl index bef1c4d..3587728 100644 --- a/src/print.jl +++ b/src/print.jl @@ -1,4 +1,4 @@ -## Copyright 2021 Ian Jauslin +## Copyright 2021-2023 Ian Jauslin  ##   ## Licensed under the Apache License, Version 2.0 (the "License");  ## you may not use this file except in compliance with the License. diff --git a/src/simpleq-Kv.jl b/src/simpleq-Kv.jl index 8789656..5a6579c 100644 --- a/src/simpleq-Kv.jl +++ b/src/simpleq-Kv.jl @@ -1,4 +1,4 @@ -## Copyright 2021 Ian Jauslin +## Copyright 2021-2023 Ian Jauslin  ##   ## Licensed under the Apache License, Version 2.0 (the "License");  ## you may not use this file except in compliance with the License. @@ -13,12 +13,27 @@  ## limitations under the License.  # Compute Kv=(-\Delta+v+4e(1-\rho u*))^{-1}v -function anyeq_Kv(minlrho,nlrho,taus,P,N,J,rho,a0,v,maxiter,tolerance,xmin,xmax,nx) +function anyeq_Kv( +  minlrho::Float64, +  nlrho::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  xmin::Float64, +  xmax::Float64, +  nx::Int64 +)    # init vectors    (weights,T,k,V,V0,A,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v)    # compute initial guess from medeq -  rhos=Array{Float64}(undef,nlrho) +  rhos=Array{Float64,1}(undef,nlrho)    for j in 0:nlrho-1      rhos[j+1]=(nlrho==1 ? rho : 10^(minlrho+(log10(rho)-minlrho)/(nlrho-1)*j))    end @@ -44,7 +59,17 @@ function anyeq_Kv(minlrho,nlrho,taus,P,N,J,rho,a0,v,maxiter,tolerance,xmin,xmax,  end  # Compute the condensate fraction for simpleq using Kv -function simpleq_Kv_condensate_fraction(rhos,taus,P,N,J,a0,v,maxiter,tolerance) +function simpleq_Kv_condensate_fraction( +  rhos::Array{Float64,1}, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64 +)    # init vectors    (weights,T,k,V,V0,A,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v) @@ -67,19 +92,35 @@ function simpleq_Kv_condensate_fraction(rhos,taus,P,N,J,a0,v,maxiter,tolerance)  end  # Compute the two-point correlation function for simpleq using Kv -function simpleq_Kv_2pt(minlrho,nlrho,taus,P,N,J,rho,a0,v,maxiter,tolerance,xmin,xmax,nx) +function simpleq_Kv_2pt( +  minlrho::Float64, +  nlrho::Int64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  rho::Float64, +  a0::Float64, +  v::Function, +  maxiter::Int64, +  tolerance::Float64, +  xmin::Float64, +  xmax::Float64, +  nx::Int64 +)    # init vectors    (weights,T,k,V,V0,A,Upsilon,Upsilon0)=anyeq_init(taus,P,N,J,v)    # compute initial guess from medeq -  rhos=Array{Float64}(undef,nlrho) +  rhos=Array{Float64,1}(undef,nlrho)    for j in 0:nlrho-1      rhos[j+1]=(nlrho==1 ? rho : 10^(minlrho+(log10(rho)-minlrho)/(nlrho-1)*j))    end    u0s=anyeq_init_medeq(rhos,N,J,k,a0,v,maxiter,tolerance)    u0=u0s[nlrho] -  (u,E,error)=anyeq_hatu(u0,P,N,J,rho,a0,weights,k,taus,V,V0,A,nothing,Upsilon,Upsilon0,v,maxiter,tolerance,Anyeq_approx(0.,0.,1.,0.,0.,0.,0.,0.,0.,0.,0.)) +  Abar=Array{Float64,5}(undef,0,0,0,0,0) +  (u,E,error)=anyeq_hatu(u0,P,N,J,rho,a0,weights,k,taus,V,V0,A,Abar,Upsilon,Upsilon0,v,maxiter,tolerance,Anyeq_approx(0.,0.,1.,0.,0.,0.,0.,0.,0.,0.,0.))    # Kv in Fourier space    Kvk=simpleq_Kv_Kvk(u,V,E,rho,Upsilon,k,taus,weights,N,J) @@ -103,7 +144,18 @@ function simpleq_Kv_2pt(minlrho,nlrho,taus,P,N,J,rho,a0,v,maxiter,tolerance,xmin  end  # Kv -function simpleq_Kv_Kvk(u,V,E,rho,Upsilon,k,taus,weights,N,J) +function simpleq_Kv_Kvk( +  u::Array{Float64,1}, +  V::Array{Float64,1}, +  E::Float64, +  rho::Float64, +  Upsilon::Array{Array{Float64,1},1}, +  k::Array{Float64,1}, +  taus::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  N::Int64, +  J::Int64 +)    # (-Delta+v+4e(1-\rho u*)) in Fourier space    M=Array{Float64,2}(undef,N*J,N*J)    for zetapp in 0:J-1 diff --git a/src/simpleq-hardcore.jl b/src/simpleq-hardcore.jl index ca64f78..398ac06 100644 --- a/src/simpleq-hardcore.jl +++ b/src/simpleq-hardcore.jl @@ -1,4 +1,4 @@ -## Copyright 2021 Ian Jauslin +## Copyright 2021-2023 Ian Jauslin  ##   ## Licensed under the Apache License, Version 2.0 (the "License");  ## you may not use this file except in compliance with the License. @@ -13,28 +13,26 @@  ## limitations under the License.  # compute energy as a function of rho -function simpleq_hardcore_energy_rho(rhos,taus,P,N,J,maxiter,tolerance) -  ## spawn workers -  # number of workers -  nw=nworkers() -  # split jobs among workers -  work=Array{Array{Int64,1},1}(undef,nw) -  # init empty arrays -  for p in 1:nw -    work[p]=zeros(0) -  end -  for j in 1:length(rhos) -    append!(work[j%nw+1],j) -  end +function simpleq_hardcore_energy_rho( +  rhos::Array{Float64,1}, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  maxiter::Int64, +  tolerance::Float64 +) +  # spawn workers +  work=spawn_workers(length(rhos))    # initialize vectors    (weights,weights_gL,r,T)=simpleq_hardcore_init(taus,P,N,J)    # initial guess -  u0s=Array{Array{Float64}}(undef,length(rhos)) -  e0s=Array{Float64}(undef,length(rhos)) +  u0s=Array{Array{Float64,1}}(undef,length(rhos)) +  e0s=Array{Float64,1}(undef,length(rhos))    for j in 1:length(rhos) -    u0s[j]=Array{Float64}(undef,N*J) +    u0s[j]=Array{Float64,1}(undef,N*J)      for i in 1:N*J        u0s[j][i]=1/(1+r[i]^2)^2      end @@ -43,17 +41,17 @@ function simpleq_hardcore_energy_rho(rhos,taus,P,N,J,maxiter,tolerance)    # save result from each task -  us=Array{Array{Float64}}(undef,length(rhos)) -  es=Array{Float64}(undef,length(rhos)) -  err=Array{Float64}(undef,length(rhos)) +  us=Array{Array{Float64,1}}(undef,length(rhos)) +  es=Array{Float64,1}(undef,length(rhos)) +  err=Array{Float64,1}(undef,length(rhos))    count=0    # for each worker -  @sync for p in 1:nw +  @sync for p in 1:length(work)      # for each task      @async for j in work[p]        count=count+1 -      if count>=nw +      if count>=length(work)          progress(count,length(rhos),10000)        end        # run the task @@ -67,12 +65,20 @@ function simpleq_hardcore_energy_rho(rhos,taus,P,N,J,maxiter,tolerance)  end  # compute u(x) -function simpleq_hardcore_ux(rho,taus,P,N,J,maxiter,tolerance) +function simpleq_hardcore_ux( +  rho::Float64, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  maxiter::Int64, +  tolerance::Float64 +)    # initialize vectors    (weights,weights_gL,r,T)=simpleq_hardcore_init(taus,P,N,J)    # initial guess -  u0=Array{Float64}(undef,N*J) +  u0=Array{Float64,1}(undef,N*J)    for i in 1:N*J      u0[i]=1/(1+r[i]^2)^2    end @@ -86,28 +92,26 @@ function simpleq_hardcore_ux(rho,taus,P,N,J,maxiter,tolerance)  end  # compute condensate fraction as a function of rho -function simpleq_hardcore_condensate_fraction_rho(rhos,taus,P,N,J,maxiter,tolerance) -  ## spawn workers -  # number of workers -  nw=nworkers() -  # split jobs among workers -  work=Array{Array{Int64,1},1}(undef,nw) -  # init empty arrays -  for p in 1:nw -    work[p]=zeros(0) -  end -  for j in 1:length(rhos) -    append!(work[j%nw+1],j) -  end +function simpleq_hardcore_condensate_fraction_rho( +  rhos::Array{Float64,1}, +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64, +  maxiter::Int64, +  tolerance::Float64 +) +  # spawn workers +  work=spawn_workers(length(rhos))    # initialize vectors    (weights,weights_gL,r,T)=simpleq_hardcore_init(taus,P,N,J)    # initial guess -  u0s=Array{Array{Float64}}(undef,length(rhos)) -  e0s=Array{Float64}(undef,length(rhos)) +  u0s=Array{Array{Float64,1}}(undef,length(rhos)) +  e0s=Array{Float64,1}(undef,length(rhos))    for j in 1:length(rhos) -    u0s[j]=Array{Float64}(undef,N*J) +    u0s[j]=Array{Float64,1}(undef,N*J)      for i in 1:N*J        u0s[j][i]=1/(1+r[i]^2)^2      end @@ -116,17 +120,17 @@ function simpleq_hardcore_condensate_fraction_rho(rhos,taus,P,N,J,maxiter,tolera    # save result from each task -  us=Array{Array{Float64}}(undef,length(rhos)) -  es=Array{Float64}(undef,length(rhos)) -  err=Array{Float64}(undef,length(rhos)) +  us=Array{Array{Float64,1}}(undef,length(rhos)) +  es=Array{Float64,1}(undef,length(rhos)) +  err=Array{Float64,1}(undef,length(rhos))    count=0    # for each worker -  @sync for p in 1:nw +  @sync for p in 1:length(work)      # for each task      @async for j in work[p]        count=count+1 -      if count>=nw +      if count>=length(work)          progress(count,length(rhos),10000)        end        # run the task @@ -142,13 +146,18 @@ end  # initialize computation -@everywhere function simpleq_hardcore_init(taus,P,N,J) +@everywhere function simpleq_hardcore_init( +  taus::Array{Float64,1}, +  P::Int64, +  N::Int64, +  J::Int64 +)    # Gauss-Legendre weights    weights=gausslegendre(N)    weights_gL=gausslaguerre(N)    # r -  r=Array{Float64}(undef,J*N) +  r=Array{Float64,1}(undef,J*N)    for zeta in 0:J-1      for j in 1:N        xj=weights[1][j] @@ -164,9 +173,23 @@ end  end  # compute u using chebyshev expansions -@everywhere function simpleq_hardcore_hatu(u0,e0,rho,r,taus,T,weights,weights_gL,P,N,J,maxiter,tolerance) +@everywhere function simpleq_hardcore_hatu( +  u0::Array{Float64,1}, +  e0::Float64, +  rho::Float64, +  r::Array{Float64,1}, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  N::Int64, +  J::Int64, +  maxiter::Int64, +  tolerance::Float64 +)    # init -  vec=Array{Float64}(undef,J*N+1) +  vec=Array{Float64,1}(undef,J*N+1)    for i in 1:J*N      vec[i]=u0[i]    end @@ -194,8 +217,20 @@ end  end  # Xi -@everywhere function simpleq_hardcore_Xi(u,e,rho,r,taus,T,weights,weights_gL,P,N,J) -  out=Array{Float64}(undef,J*N+1) +@everywhere function simpleq_hardcore_Xi( +  u::Array{Float64,1}, +  e::Float64, +  rho::Float64, +  r::Array{Float64,1}, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  N::Int64, +  J::Int64 +) +  out=Array{Float64,1}(undef,J*N+1)    FU=chebyshev(u,taus,weights,P,N,J,4)    #D's @@ -215,7 +250,19 @@ end    return out  end  # DXi -@everywhere function simpleq_hardcore_DXi(u,e,rho,r,taus,T,weights,weights_gL,P,N,J) +@everywhere function simpleq_hardcore_DXi( +  u::Array{Float64,1}, +  e::Float64, +  rho::Float64, +  r::Array{Float64,1}, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  N::Int64, +  J::Int64 +)    out=Array{Float64,2}(undef,J*N+1,J*N+1)    FU=chebyshev(u,taus,weights,P,N,J,4) @@ -232,15 +279,15 @@ end    for zetapp in 0:J-1      for n in 1:N -      one=zeros(Int64,J*N) -      one[zetapp*N+n]=1 +      one=zeros(Float64,J*N) +      one[zetapp*N+n]=1.        Fone=chebyshev(one,taus,weights,P,N,J,4)        for i in 1:J*N  	# du/du  	out[i,zetapp*N+n]=dot(Fone,d1[i])+2*dot(FU,d2[i]*Fone)-(zetapp*N+n==i ? 1 : 0)  	# du/de -	out[i,J*N+1]=(dsed0[i]+dot(FU,dsed1[i])+dot(FU,dsed2[i]*FU))/(2*sqrt(abs(e)))*(e>=0 ? 1 : -1) +	out[i,J*N+1]=(dsed0[i]+dot(FU,dsed1[i])+dot(FU,dsed2[i]*FU))/(2*sqrt(abs(e)))*(e>=0. ? 1. : -1.)        end        # de/du        out[J*N+1,zetapp*N+n]=2*pi*rho* @@ -253,14 +300,26 @@ end    #de/de    out[J*N+1,J*N+1]=-1+2*pi*rho*      (2-dsedgamma0(e,rho,weights)-dot(FU,dsedgamma1(e,rho,taus,T,weights,weights_gL,P,J,4))-dot(FU,dsedgamma2(e,rho,taus,T,weights,weights_gL,P,J,4)*FU))/denom/ -    (2*sqrt(abs(e)))*(e>=0 ? 1 : -1) +    (2*sqrt(abs(e)))*(e>=0. ? 1. : -1.)    return out  end  # dXi/dmu -@everywhere function simpleq_hardcore_dXidmu(u,e,rho,r,taus,T,weights,weights_gL,P,N,J) -  out=Array{Float64}(undef,J*N+1) +@everywhere function simpleq_hardcore_dXidmu( +  u::Array{Float64,1}, +  e::Float64, +  rho::Float64, +  r::Array{Float64,1}, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  N::Int64, +  J::Int64 +) +  out=Array{Float64,1}(undef,J*N+1)    FU=chebyshev(u,taus,weights,P,N,J,4)    #D's @@ -281,17 +340,37 @@ end  end  # B's -@everywhere function B0(r) +@everywhere function B0( +  r::Float64 +)    return pi/12*(r-1)^2*(r+5)  end -@everywhere function B1(r,zeta,n,taus,T,weights,nu) +@everywhere function B1( +  r::Float64, +  zeta::Int64, +  n::Int64, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  nu::Int64 +)    return (taus[zeta+1]>=(2-r)/r || taus[zeta+2]<=-r/(r+2) ? 0 :      8*pi/(r+1)*integrate_legendre(tau->        (1-(r-(1-tau)/(1+tau))^2)/(1+tau)^(3-nu)*T[n+1]((2*tau-(taus[zeta+1]+taus[zeta+2]))/(taus[zeta+2]-taus[zeta+1])),max(taus[zeta+1],-r/(r+2))      ,min(taus[zeta+2],(2-r)/r),weights)    )  end -@everywhere function B2(r,zeta,n,zetap,m,taus,T,weights,nu) +@everywhere function B2( +  r::Float64, +  zeta::Int64, +  n::Int64, +  zetap::Int64, +  m::Int64, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  nu::Int64 +)    return 32*pi/(r+1)*integrate_legendre(tau->      1/(1+tau)^(3-nu)*T[n+1]((2*tau-(taus[zeta+1]+taus[zeta+2]))/(taus[zeta+2]-taus[zeta+1]))*      (taus[zetap+1]>=alphap(abs(r-(1-tau)/(1+tau))-2*tau/(1+tau),tau) || taus[zetap+2]<=alpham(1+r,tau) ? 0 : @@ -303,30 +382,49 @@ end  end  # D's -@everywhere function D0(e,rho,r,weights,N,J) -  out=Array{Float64}(undef,J*N) +@everywhere function D0( +  e::Float64, +  rho::Float64, +  r::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  N::Int64, +  J::Int64 +) +  out=Array{Float64,1}(undef,J*N)    for i in 1:J*N      out[i]=exp(-2*sqrt(abs(e))*r[i])/(r[i]+1)+        rho*sqrt(abs(e))/(r[i]+1)*integrate_legendre(s->  	(s+1)*B0(s)*(exp(-2*sqrt(abs(e))*(r[i]-s))-exp(-2*sqrt(abs(e))*(r[i]+s)))/2 -      ,0,min(1,r[i]),weights)+ +      ,0.,min(1.,r[i]),weights)+        (r[i]>=1 ? 0 :  	rho*sqrt(abs(e))/(2*(r[i]+1))*(1-exp(-4*sqrt(abs(e))*r[i]))*integrate_legendre(s->  	  (s+r[i]+1)*B0(s+r[i])*exp(-2*sqrt(abs(e))*s) -	,0,1-r[i],weights) +	,0.,1. -r[i],weights)        )    end    return out  end -@everywhere function D1(e,rho,r,taus,T,weights,weights_gL,P,N,J,nu) -  out=Array{Array{Float64}}(undef,J*N) +@everywhere function D1( +  e::Float64, +  rho::Float64, +  r::Array{Float64,1}, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  N::Int64, +  J::Int64, +  nu::Int64 +) +  out=Array{Array{Float64,1},1}(undef,J*N)    for i in 1:J*N -    out[i]=Array{Float64}(undef,(P+1)*J) +    out[i]=Array{Float64,1}(undef,(P+1)*J)      for zeta in 0:J-1        for n in 0:P  	out[i][zeta*(P+1)+n+1]=rho*sqrt(abs(e))/(r[i]+1)*integrate_legendre(s->  	    (s+1)*B1(s,zeta,n,taus,T,weights,nu)*(exp(-2*sqrt(abs(e))*(r[i]-s))-exp(-2*sqrt(abs(e))*(r[i]+s)))/2 -	  ,0,r[i],weights)+ +	  ,0.,r[i],weights)+  	  rho*sqrt(abs(e))/(2*(r[i]+1))*(1-exp(-4*sqrt(abs(e))*r[i]))*integrate_laguerre(s->  	    (s+r[i]+1)*B1(s+r[i],zeta,n,taus,T,weights,nu)  	  ,2*sqrt(abs(e)),weights_gL) @@ -336,7 +434,19 @@ end    return out  end -@everywhere function D2(e,rho,r,taus,T,weights,weights_gL,P,N,J,nu) +@everywhere function D2( +  e::Float64, +  rho::Float64, +  r::Array{Float64,1}, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  N::Int64, +  J::Int64, +  nu::Int64 +)    out=Array{Array{Float64,2}}(undef,J*N)    for i in 1:J*N      out[i]=Array{Float64,2}(undef,(P+1)*J,(P+1)*J) @@ -346,7 +456,7 @@ end  	  for m in 0:P  	    out[i][zeta*(P+1)+n+1,zetap*(P+1)+m+1]=rho*sqrt(abs(e))/(r[i]+1)*integrate_legendre(s->  		(s+1)*B2(s,zeta,n,zetap,m,taus,T,weights,nu)*(exp(-2*sqrt(abs(e))*(r[i]-s))-exp(-2*sqrt(abs(e))*(r[i]+s)))/2 -	      ,0,r[i],weights)+ +	      ,0.,r[i],weights)+  	      rho*sqrt(abs(e))/(2*(r[i]+1))*(1-exp(-4*sqrt(abs(e))*r[i]))*integrate_laguerre(s->  		(s+r[i]+1)*B2(s+r[i],zeta,n,zetap,m,taus,T,weights,nu)  	      ,2*sqrt(abs(e)),weights_gL) @@ -359,28 +469,47 @@ end  end  # dD/d sqrt(abs(e))'s -@everywhere function dseD0(e,rho,r,weights,N,J) -  out=Array{Float64}(undef,J*N) +@everywhere function dseD0( +  e::Float64, +  rho::Float64, +  r::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  N::Int64, +  J::Int64 +) +  out=Array{Float64,1}(undef,J*N)    for i in 1:J*N      out[i]=-2*r[i]*exp(-2*sqrt(abs(e))*r[i])/(r[i]+1)+        rho/(r[i]+1)*integrate_legendre(s->  	(s+1)*B0(s)*((1-2*sqrt(abs(e))*r[i])*(exp(-2*sqrt(abs(e))*(r[i]-s))-exp(-2*sqrt(abs(e))*(r[i]+s)))/2+2*sqrt(abs(e))*s*(exp(-2*sqrt(abs(e))*(r[i]-s))+exp(-2*sqrt(abs(e))*(r[i]+s)))/2) -      ,0,min(1,r[i]),weights)+ +      ,0.,min(1.,r[i]),weights)+        (r[i]>=1 ? 0 : -	rho/(2*(r[i]+1))*integrate_legendre(s->(s+r[i]+1)*B0(s+r[i])*((1-2*sqrt(abs(e))*s)*(1-exp(-4*sqrt(abs(e))*r[i]))*exp(-2*sqrt(abs(e))*s)+4*sqrt(abs(e))*r[i]*exp(-2*sqrt(abs(e))*(2*r[i]+s))),0,1-r[i],weights) +	rho/(2*(r[i]+1))*integrate_legendre(s->(s+r[i]+1)*B0(s+r[i])*((1-2*sqrt(abs(e))*s)*(1-exp(-4*sqrt(abs(e))*r[i]))*exp(-2*sqrt(abs(e))*s)+4*sqrt(abs(e))*r[i]*exp(-2*sqrt(abs(e))*(2*r[i]+s))),0.,1. -r[i],weights)        )    end    return out  end -@everywhere function dseD1(e,rho,r,taus,T,weights,weights_gL,P,N,J,nu) -  out=Array{Array{Float64}}(undef,J*N) +@everywhere function dseD1( +  e::Float64, +  rho::Float64, +  r::Array{Float64,1}, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  N::Int64, +  J::Int64, +  nu::Int64 +) +  out=Array{Array{Float64,1},1}(undef,J*N)    for i in 1:J*N -    out[i]=Array{Float64}(undef,(P+1)*J) +    out[i]=Array{Float64,1}(undef,(P+1)*J)      for zeta in 0:J-1        for n in 0:P  	out[i][zeta*(P+1)+n+1]=rho/(r[i]+1)*integrate_legendre(s->  	  (s+1)*B1(s,zeta,n,taus,T,weights,nu)*((1-2*sqrt(abs(e))*r[i])*(exp(-2*sqrt(abs(e))*(r[i]-s))-exp(-2*sqrt(abs(e))*(r[i]+s)))/2+2*sqrt(abs(e))*s*(exp(-2*sqrt(abs(e))*(r[i]-s))+exp(-2*sqrt(abs(e))*(r[i]+s)))/2) -	,0,r[i],weights)+ +	,0.,r[i],weights)+  	rho/(2*(r[i]+1))*integrate_laguerre(s->  	  (s+r[i]+1)*B1(s+r[i],zeta,n,taus,T,weights,nu)*((1-2*sqrt(abs(e))*s)*(1-exp(-4*sqrt(abs(e))*r[i]))+4*sqrt(abs(e))*r[i]*exp(-4*sqrt(abs(e))*r[i]))  	,2*sqrt(abs(e)),weights_gL) @@ -389,7 +518,19 @@ end    end    return out  end -@everywhere function dseD2(e,rho,r,taus,T,weights,weights_gL,P,N,J,nu) +@everywhere function dseD2( +  e::Float64, +  rho::Float64, +  r::Array{Float64,1}, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  N::Int64, +  J::Int64, +  nu::Int64 +)    out=Array{Array{Float64,2}}(undef,J*N)    for i in 1:J*N      out[i]=Array{Float64,2}(undef,(P+1)*J,(P+1)*J) @@ -399,7 +540,7 @@ end  	  for m in 0:P  	    out[i][zeta*(P+1)+n+1,zetap*(P+1)+m+1]=rho/(r[i]+1)*integrate_legendre(s->  	      (s+1)*B2(s,zeta,n,zetap,m,taus,T,weights,nu)*((1-2*sqrt(abs(e))*r[i])*(exp(-2*sqrt(abs(e))*(r[i]-s))-exp(-2*sqrt(abs(e))*(r[i]+s)))/2+2*sqrt(abs(e))*s*(exp(-2*sqrt(abs(e))*(r[i]-s))+exp(-2*sqrt(abs(e))*(r[i]+s)))/2) -	    ,0,r[i],weights)+ +	    ,0.,r[i],weights)+  	    rho/(2*(r[i]+1))*integrate_laguerre(s->  	      (s+r[i]+1)*B2(s+r[i],zeta,n,zetap,m,taus,T,weights,nu)*((1-2*sqrt(abs(e))*s)*(1-exp(-4*sqrt(abs(e))*r[i]))+4*sqrt(abs(e))*r[i]*exp(-4*sqrt(abs(e))*r[i]))  	    ,2*sqrt(abs(e)),weights_gL) @@ -412,28 +553,47 @@ end  end  # dD/d sqrt(abs(e+mu/2))'s -@everywhere function dsmuD0(e,rho,r,weights,N,J) -  out=Array{Float64}(undef,J*N) +@everywhere function dsmuD0( +  e::Float64, +  rho::Float64, +  r::Array{Float64,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  N::Int64, +  J::Int64 +) +  out=Array{Float64,1}(undef,J*N)    for i in 1:J*N      out[i]=-2*r[i]*exp(-2*sqrt(abs(e))*r[i])/(r[i]+1)+        rho/(r[i]+1)*integrate_legendre(s->  	(s+1)*B0(s)*((-1-2*sqrt(abs(e))*r[i])*(exp(-2*sqrt(abs(e))*(r[i]-s))-exp(-2*sqrt(abs(e))*(r[i]+s)))/2+2*sqrt(abs(e))*s*(exp(-2*sqrt(abs(e))*(r[i]-s))+exp(-2*sqrt(abs(e))*(r[i]+s)))/2) -      ,0,min(1,r[i]),weights)+ +      ,0.,min(1.,r[i]),weights)+        (r[i]>=1 ? 0 : -	rho/(2*(r[i]+1))*integrate_legendre(s->(s+r[i]+1)*B0(s+r[i])*((-1-2*sqrt(abs(e))*s)*(1-exp(-4*sqrt(abs(e))*r[i]))*exp(-2*sqrt(abs(e))*s)+4*sqrt(abs(e))*r[i]*exp(-2*sqrt(abs(e))*(2*r[i]+s))),0,1-r[i],weights) +	rho/(2*(r[i]+1))*integrate_legendre(s->(s+r[i]+1)*B0(s+r[i])*((-1-2*sqrt(abs(e))*s)*(1-exp(-4*sqrt(abs(e))*r[i]))*exp(-2*sqrt(abs(e))*s)+4*sqrt(abs(e))*r[i]*exp(-2*sqrt(abs(e))*(2*r[i]+s))),0.,1. -r[i],weights)        )    end    return out  end -@everywhere function dsmuD1(e,rho,r,taus,T,weights,weights_gL,P,N,J,nu) -  out=Array{Array{Float64}}(undef,J*N) +@everywhere function dsmuD1( +  e::Float64, +  rho::Float64, +  r::Array{Float64,1}, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  N::Int64, +  J::Int64, +  nu::Int64 +) +  out=Array{Array{Float64,1},1}(undef,J*N)    for i in 1:J*N -    out[i]=Array{Float64}(undef,(P+1)*J) +    out[i]=Array{Float64,1}(undef,(P+1)*J)      for zeta in 0:J-1        for n in 0:P  	out[i][zeta*(P+1)+n+1]=rho/(r[i]+1)*integrate_legendre(s->  	  (s+1)*B1(s,zeta,n,taus,T,weights,nu)*((-1-2*sqrt(abs(e))*r[i])*(exp(-2*sqrt(abs(e))*(r[i]-s))-exp(-2*sqrt(abs(e))*(r[i]+s)))/2+2*sqrt(abs(e))*s*(exp(-2*sqrt(abs(e))*(r[i]-s))+exp(-2*sqrt(abs(e))*(r[i]+s)))/2) -	,0,r[i],weights)+ +	,0.,r[i],weights)+  	rho/(2*(r[i]+1))*integrate_laguerre(s->  	  (s+r[i]+1)*B1(s+r[i],zeta,n,taus,T,weights,nu)*((-1-2*sqrt(abs(e))*s)*(1-exp(-4*sqrt(abs(e))*r[i]))+4*sqrt(abs(e))*r[i]*exp(-4*sqrt(abs(e))*r[i]))  	,2*sqrt(abs(e)),weights_gL) @@ -442,7 +602,19 @@ end    end    return out  end -@everywhere function dsmuD2(e,rho,r,taus,T,weights,weights_gL,P,N,J,nu) +@everywhere function dsmuD2( +  e::Float64, +  rho::Float64, +  r::Array{Float64,1}, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  N::Int64, +  J::Int64, +  nu::Int64 +)    out=Array{Array{Float64,2}}(undef,J*N)    for i in 1:J*N      out[i]=Array{Float64,2}(undef,(P+1)*J,(P+1)*J) @@ -452,7 +624,7 @@ end  	  for m in 0:P  	    out[i][zeta*(P+1)+n+1,zetap*(P+1)+m+1]=rho/(r[i]+1)*integrate_legendre(s->  	      (s+1)*B2(s,zeta,n,zetap,m,taus,T,weights,nu)*((-1-2*sqrt(abs(e))*r[i])*(exp(-2*sqrt(abs(e))*(r[i]-s))-exp(-2*sqrt(abs(e))*(r[i]+s)))/2+2*sqrt(abs(e))*s*(exp(-2*sqrt(abs(e))*(r[i]-s))+exp(-2*sqrt(abs(e))*(r[i]+s)))/2) -	    ,0,r[i],weights)+ +	    ,0.,r[i],weights)+  	    rho/(2*(r[i]+1))*integrate_laguerre(s->  	      (s+r[i]+1)*B2(s+r[i],zeta,n,zetap,m,taus,T,weights,nu)*((-1-2*sqrt(abs(e))*s)*(1-exp(-4*sqrt(abs(e))*r[i]))+4*sqrt(abs(e))*r[i]*exp(-4*sqrt(abs(e))*r[i]))  	    ,2*sqrt(abs(e)),weights_gL) @@ -465,11 +637,25 @@ end  end  # gamma's -@everywhere function gamma0(e,rho,weights) -  return 2*rho*e*integrate_legendre(s->(s+1)*B0(s)*exp(-2*sqrt(abs(e))*s),0,1,weights) +@everywhere function gamma0( +  e::Float64, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}} +) +  return 2*rho*e*integrate_legendre(s->(s+1)*B0(s)*exp(-2*sqrt(abs(e))*s),0.,1.,weights)  end -@everywhere function gamma1(e,rho,taus,T,weights,weights_gL,P,J,nu) -  out=Array{Float64}(undef,J*(P+1)) +@everywhere function gamma1( +  e::Float64, +  rho::Float64, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  J::Int64, +  nu::Int64 +) +  out=Array{Float64,1}(undef,J*(P+1))    for zeta in 0:J-1      for n in 0:P        out[zeta*(P+1)+n+1]=2*rho*e*integrate_laguerre(s->(s+1)*B1(s,zeta,n,taus,T,weights,nu),2*sqrt(abs(e)),weights_gL) @@ -477,7 +663,17 @@ end    end    return out  end -@everywhere function gamma2(e,rho,taus,T,weights,weights_gL,P,J,nu) +@everywhere function gamma2( +  e::Float64, +  rho::Float64, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  J::Int64, +  nu::Int64 +)    out=Array{Float64,2}(undef,J*(P+1),J*(P+1))    for zeta in 0:J-1      for n in 0:P @@ -492,11 +688,25 @@ end  end  # dgamma/d sqrt(abs(e))'s -@everywhere function dsedgamma0(e,rho,weights) -  return 4*rho*sqrt(abs(e))*integrate_legendre(s->(s+1)*B0(s)*(1-sqrt(abs(e))*s)*exp(-2*sqrt(abs(e))*s),0,1,weights) +@everywhere function dsedgamma0( +  e::Float64, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}} +) +  return 4*rho*sqrt(abs(e))*integrate_legendre(s->(s+1)*B0(s)*(1-sqrt(abs(e))*s)*exp(-2*sqrt(abs(e))*s),0.,1.,weights)  end -@everywhere function dsedgamma1(e,rho,taus,T,weights,weights_gL,P,J,nu) -  out=Array{Float64}(undef,J*(P+1)) +@everywhere function dsedgamma1( +  e::Float64, +  rho::Float64, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  J::Int64, +  nu::Int64 +) +  out=Array{Float64,1}(undef,J*(P+1))    for zeta in 0:J-1      for n in 0:P        out[zeta*(P+1)+n+1]=4*rho*e*integrate_laguerre(s->(s+1)*B1(s,zeta,n,taus,T,weights,nu)*(1-sqrt(abs(e))*s),2*sqrt(abs(e)),weights_gL) @@ -504,7 +714,17 @@ end    end    return out  end -@everywhere function dsedgamma2(e,rho,taus,T,weights,weights_gL,P,J,nu) +@everywhere function dsedgamma2( +  e::Float64, +  rho::Float64, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  J::Int64, +  nu::Int64 +)    out=Array{Float64,2}(undef,J*(P+1),J*(P+1))    for zeta in 0:J-1      for n in 0:P @@ -519,11 +739,25 @@ end  end  # dgamma/d sqrt(e+mu/2)'s -@everywhere function dsmudgamma0(e,rho,weights) -  return -4*rho*e*integrate_legendre(s->(s+1)*s*B0(s)*exp(-2*sqrt(abs(e))*s),0,1,weights) +@everywhere function dsmudgamma0( +  e::Float64, +  rho::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}} +) +  return -4*rho*e*integrate_legendre(s->(s+1)*s*B0(s)*exp(-2*sqrt(abs(e))*s),0.,1.,weights)  end -@everywhere function dsmudgamma1(e,rho,taus,T,weights,weights_gL,P,J,nu) -  out=Array{Float64}(undef,J*(P+1)) +@everywhere function dsmudgamma1( +  e::Float64, +  rho::Float64, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  J::Int64, +  nu::Int64 +) +  out=Array{Float64,1}(undef,J*(P+1))    for zeta in 0:J-1      for n in 0:P        out[zeta*(P+1)+n+1]=-4*rho*e*integrate_laguerre(s->s*(s+1)*B1(s,zeta,n,taus,T,weights,nu),2*sqrt(abs(e)),weights_gL) @@ -531,7 +765,17 @@ end    end    return out  end -@everywhere function dsmudgamma2(e,rho,taus,T,weights,weights_gL,P,J,nu) +@everywhere function dsmudgamma2( +  e::Float64, +  rho::Float64, +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  weights_gL::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  J::Int64, +  nu::Int64 +)    out=Array{Float64,2}(undef,J*(P+1),J*(P+1))    for zeta in 0:J-1      for n in 0:P @@ -546,25 +790,41 @@ end  end  # \bar gamma's -@everywhere function gammabar0(weights) -  return 4*pi*integrate_legendre(s->s^2*B0(s-1),0,1,weights) +@everywhere function gammabar0( +  weights::Tuple{Array{Float64,1},Array{Float64,1}} +) +  return 4*pi*integrate_legendre(s->s^2*B0(s-1),0.,1.,weights)  end -@everywhere function gammabar1(taus,T,weights,P,J,nu) -  out=Array{Float64}(undef,J*(P+1)) +@everywhere function gammabar1( +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  J::Int64, +  nu::Int64 +) +  out=Array{Float64,1}(undef,J*(P+1))    for zeta in 0:J-1      for n in 0:P -      out[zeta*(P+1)+n+1]=4*pi*integrate_legendre(s->s^2*B1(s-1,zeta,n,taus,T,weights,nu),0,1,weights) +      out[zeta*(P+1)+n+1]=4*pi*integrate_legendre(s->s^2*B1(s-1,zeta,n,taus,T,weights,nu),0.,1.,weights)      end    end    return out  end -@everywhere function gammabar2(taus,T,weights,P,J,nu) +@everywhere function gammabar2( +  taus::Array{Float64,1}, +  T::Array{Polynomial,1}, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  P::Int64, +  J::Int64, +  nu::Int64 +)    out=Array{Float64,2}(undef,J*(P+1),J*(P+1))    for zeta in 0:J-1      for n in 0:P        for zetap in 0:J-1  	for m in 0:P -	  out[zeta*(P+1)+n+1,zetap*(P+1)+m+1]=4*pi*integrate_legendre(s->s^2*B2(s-1,zeta,n,zetap,m,taus,T,weights,nu),0,1,weights) +	  out[zeta*(P+1)+n+1,zetap*(P+1)+m+1]=4*pi*integrate_legendre(s->s^2*B2(s-1,zeta,n,zetap,m,taus,T,weights,nu),0.,1.,weights)  	end        end      end diff --git a/src/simpleq-iteration.jl b/src/simpleq-iteration.jl index 98977b8..4c4de07 100644 --- a/src/simpleq-iteration.jl +++ b/src/simpleq-iteration.jl @@ -1,4 +1,4 @@ -## Copyright 2021 Ian Jauslin +## Copyright 2021-2023 Ian Jauslin  ##   ## Licensed under the Apache License, Version 2.0 (the "License");  ## you may not use this file except in compliance with the License. @@ -13,7 +13,12 @@  ## limitations under the License.  # compute rho(e) using the iteration -function simpleq_iteration_rho_e(es,order,v,maxiter) +function simpleq_iteration_rho_e( +  es::Array{Float64,1}, +  order::Int64, +  v::Function, +  maxiter::Int64 +)    for j in 1:length(es)      (u,rho)=simpleq_iteration_hatun(es[j],order,v,maxiter)      @printf("% .15e % .15e\n",es[j],real(rho[maxiter+1])) @@ -21,7 +26,15 @@ function simpleq_iteration_rho_e(es,order,v,maxiter)  end  # compute u(x) using the iteration and print at every step -function simpleq_iteration_ux(order,e,v,maxiter,xmin,xmax,nx) +function simpleq_iteration_ux( +  order::Int64, +  e::Float64, +  v::Function, +  maxiter::Int64, +  xmin::Float64, +  xmax::Float64, +  nx::Int64 +)    (u,rho)=simpleq_iteration_hatun(e,order,v,maxiter)    weights=gausslegendre(order) @@ -37,7 +50,12 @@ end  # \hat u_n -function simpleq_iteration_hatun(e,order,v,maxiter) +function simpleq_iteration_hatun( +  e::Float64, +  order::Int64, +  v::Function, +  maxiter::Int64 +)    # gauss legendre weights    weights=gausslegendre(order) @@ -46,7 +64,7 @@ function simpleq_iteration_hatun(e,order,v,maxiter)    (Eta,Eta0)=easyeq_init_H(weights,v)    # init u and rho -  u=Array{Array{Float64}}(undef,maxiter+1) +  u=Array{Array{Float64,1},1}(undef,maxiter+1)    u[1]=zeros(Float64,order)    rho=zeros(Float64,maxiter+1) @@ -60,7 +78,11 @@ function simpleq_iteration_hatun(e,order,v,maxiter)  end  # A -function simpleq_iteration_A(e,weights,Eta) +function simpleq_iteration_A( +  e::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  Eta::Array{Float64,1} +)    N=length(weights[1])    out=zeros(Float64,N,N)    for i in 1:N @@ -75,7 +97,12 @@ function simpleq_iteration_A(e,weights,Eta)  end  # b -function simpleq_iteration_b(u,e,rho,V) +function simpleq_iteration_b( +  u::Array{Float64,1}, +  e::Float64, +  rho::Float64, +  V::Array{Float64,1} +)    out=zeros(Float64,length(V))    for i in 1:length(V)      out[i]=V[i]+2*e*rho*u[i]^2 @@ -84,7 +111,13 @@ function simpleq_iteration_b(u,e,rho,V)  end  # rho_n -function simpleq_iteration_rhon(u,e,weights,V0,Eta0) +function simpleq_iteration_rhon( +  u::Array{Float64,1}, +  e::Float64, +  weights::Tuple{Array{Float64,1},Array{Float64,1}}, +  V0::Float64, +  Eta0::Float64 +)    S=V0    for i in 1:length(weights[1])      y=(weights[1][i]+1)/2 diff --git a/src/tools.jl b/src/tools.jl index 0d3dc7f..5d1678d 100644 --- a/src/tools.jl +++ b/src/tools.jl @@ -1,4 +1,4 @@ -## Copyright 2021 Ian Jauslin +## Copyright 2021-2023 Ian Jauslin  ##   ## Licensed under the Apache License, Version 2.0 (the "License");  ## you may not use this file except in compliance with the License. @@ -13,7 +13,9 @@  ## limitations under the License.  # \Phi(x)=2*(1-sqrt(1-x))/x -@everywhere function Phi(x) +@everywhere function Phi( +  x::Float64 +)    if abs(x)>1e-5      return 2*(1-sqrt(abs(1-x)))/x    else @@ -21,7 +23,9 @@    end  end  # \partial\Phi -@everywhere function dPhi(x) +@everywhere function dPhi( +  x::Float64 +)    #if abs(x-1)<1e-5    #  @printf(stderr,"warning: dPhi is singular at 1, and evaluating it at (% .8e+i% .8e)\n",real(x),imag(x))    #end @@ -33,17 +37,25 @@ end  end  # apply Phi to every element of a vector -@everywhere function dotPhi(v) +@everywhere function dotPhi( +  v::Array{Float64,1} +)    out=zeros(Float64,length(v))    for i in 1:length(v)      out[i]=Phi(v[i])    end    return out  end -@everywhere function dotdPhi(v) +@everywhere function dotdPhi( +  v::Array{Float64,1} +)    out=zeros(Float64,length(v))    for i in 1:length(v)      out[i]=dPhi(v[i])    end    return out  end + +@everywhere function sinc(x::Float64) +  return (x == 0 ? 1 : sin(x)/x) +end | 
