diff options
| author | Ian Jauslin <ian@jauslin.org> | 2022-05-19 19:04:30 +0200 | 
|---|---|---|
| committer | Ian Jauslin <ian@jauslin.org> | 2022-05-19 23:01:00 +0200 | 
| commit | d58123d7cc0b61179b21ecfa0bb9d712c562e5d8 (patch) | |
| tree | b7b0b306d5d63a1f05022f78ec21415244d39c7b /docs/nstrophy_doc | |
| parent | 6fbcb8665824b0c1edbbe8cb18d509ca7e006e49 (diff) | |
Energy ineuqalities in doc
Diffstat (limited to 'docs/nstrophy_doc')
| -rw-r--r-- | docs/nstrophy_doc/nstrophy_doc.tex | 111 | 
1 files changed, 110 insertions, 1 deletions
| diff --git a/docs/nstrophy_doc/nstrophy_doc.tex b/docs/nstrophy_doc/nstrophy_doc.tex index 0e058f9..abc8f48 100644 --- a/docs/nstrophy_doc/nstrophy_doc.tex +++ b/docs/nstrophy_doc/nstrophy_doc.tex @@ -125,7 +125,117 @@ Therefore,      \mathcal F\left(q_x|q|\hat\varphi_q\right)(n)    \right)(k)  \end{equation} +\bigskip +\point{\bf Energy}. +We define the energy as +\begin{equation} +  E(t)=\frac12\int dx\ u^2(t,x)=\frac12\sum_{k\in\mathbb Z^2}|\hat u_k|^2 +  . +\end{equation} +We have +\begin{equation} +  \partial_t E=\int dx\ u\partial tu +  = +  \nu\int dx\ u\Delta u +  +\int dx\ ug +  -\int dx\ u(u\cdot\nabla)u +  . +\end{equation} +Since we have periodic boundary conditions, +\begin{equation} +  \int dx\ u\Delta u=-\int dx\ |\nabla u|^2 +  . +\end{equation} +Furthermore, +\begin{equation} +  I:=\int dx\ u(u\cdot\nabla)u +  =\sum_{i,j=1,2}\int dx\ u_iu_j\partial_ju_i +  = +  -\sum_{i,j=1,2}\int dx\ (\partial_ju_i)u_ju_i +  -\sum_{i,j=1,2}\int dx\ u_i(\partial_ju_j)u_i +\end{equation} +and since $\nabla\cdot u=0$, +\begin{equation} +  I +  = +  -I +\end{equation} +and so $I=0$. +Thus, +\begin{equation} +  \partial_t E= +  \int dx\ \left(-\nu|\nabla u|^2+ug\right) +  = +  \sum_{k\in\mathbb Z^2}\left(-4\pi^2\nu k^2|\hat u_k|^2+\hat u_{-k}\hat g_k\right) +  . +\end{equation} +Furthermore, +\begin{equation} +  \sum_{k\in\mathbb Z^2}k^2|\hat u_k|^2\geqslant +  \sum_{k\in\mathbb Z^2}|\hat u_k|^2-|\hat u_0|^2 +  =2E-|\hat u_0|^2 +\end{equation} +so +\begin{equation} +  \partial_t E\leqslant -8\pi^2\nu E+4\pi^2\nu\hat u_0^2+\sum_{k\in\mathbb Z^2}\hat u_{-k}\hat g_k +  \leqslant +  -8\pi^2\nu E+4\pi^2\nu\hat u_0^2+ +  \|\hat g\|_2\sqrt{2E} +  . +\end{equation} +In particular, if $\hat u_0=0$ (which corresponds to keeping the center of mass fixed), +\begin{equation} +  \partial_t E\leqslant -8\pi^2\nu E+\|\hat g\|_2\sqrt{2E} +  . +\end{equation} +Now, if $8\pi^2\nu\sqrt E<\sqrt2\|\hat g\|_2$, then +\begin{equation} +  \frac{\partial_t E}{-8\pi^2\nu E+\|\hat g\|_2\sqrt{2E}}\leqslant1 +\end{equation} +and so +\begin{equation} +  \frac{\log(1-\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(t)})}{-4\pi^2\nu}\leqslant t+ +  \frac{\log(1-\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(0)})}{-4\pi^2\nu} +\end{equation} +and +\begin{equation} +  E(t) +  \leqslant +  \left( +    \frac{\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-4\pi^2\nu t}) +    +e^{-4\pi^2\nu t}\sqrt{E(0)} +  \right)^2 +  . +\end{equation} +If $8\pi^2\nu\sqrt E>\sqrt2\|\hat g\|_2$, +\begin{equation} +  \frac{\partial_t E}{-8\pi^2\nu E+\|\hat g\|_2\sqrt{2E}}\geqslant1 +\end{equation} +and so +\begin{equation} +  \frac{\log(\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(t)}-1)}{-4\pi^2\nu}\geqslant t+ +  \frac{\log(\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(0)})-1}{-4\pi^2\nu} +\end{equation} +and +\begin{equation} +  E(t) +  \leqslant +  \left( +    \frac{\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-4\pi^2\nu t}) +    +e^{-4\pi^2\nu t}\sqrt{E(0)} +  \right)^2 +  . +\end{equation} +\bigskip + +\point{\bf Enstrophy}. +The enstrophy is defined as +\begin{equation} +  \mathcal En(t)=\int dx\ |\nabla u|^2 +  =4\pi^2\sum_{k\in\mathbb Z^2}k^2|\hat u_k|^2 +  . +\end{equation}  \vfill  \eject @@ -135,5 +245,4 @@ Therefore,  \IfFileExists{bibliography/bibliography.tex}{\input bibliography/bibliography.tex}{}  \end{thebibliography} -  \end{document} | 
