Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorIan Jauslin <ian@jauslin.org>2022-05-19 19:04:30 +0200
committerIan Jauslin <ian@jauslin.org>2022-05-19 23:01:00 +0200
commitd58123d7cc0b61179b21ecfa0bb9d712c562e5d8 (patch)
treeb7b0b306d5d63a1f05022f78ec21415244d39c7b
parent6fbcb8665824b0c1edbbe8cb18d509ca7e006e49 (diff)
Energy ineuqalities in doc
-rw-r--r--docs/nstrophy_doc/nstrophy_doc.tex111
1 files changed, 110 insertions, 1 deletions
diff --git a/docs/nstrophy_doc/nstrophy_doc.tex b/docs/nstrophy_doc/nstrophy_doc.tex
index 0e058f9..abc8f48 100644
--- a/docs/nstrophy_doc/nstrophy_doc.tex
+++ b/docs/nstrophy_doc/nstrophy_doc.tex
@@ -125,7 +125,117 @@ Therefore,
\mathcal F\left(q_x|q|\hat\varphi_q\right)(n)
\right)(k)
\end{equation}
+\bigskip
+\point{\bf Energy}.
+We define the energy as
+\begin{equation}
+ E(t)=\frac12\int dx\ u^2(t,x)=\frac12\sum_{k\in\mathbb Z^2}|\hat u_k|^2
+ .
+\end{equation}
+We have
+\begin{equation}
+ \partial_t E=\int dx\ u\partial tu
+ =
+ \nu\int dx\ u\Delta u
+ +\int dx\ ug
+ -\int dx\ u(u\cdot\nabla)u
+ .
+\end{equation}
+Since we have periodic boundary conditions,
+\begin{equation}
+ \int dx\ u\Delta u=-\int dx\ |\nabla u|^2
+ .
+\end{equation}
+Furthermore,
+\begin{equation}
+ I:=\int dx\ u(u\cdot\nabla)u
+ =\sum_{i,j=1,2}\int dx\ u_iu_j\partial_ju_i
+ =
+ -\sum_{i,j=1,2}\int dx\ (\partial_ju_i)u_ju_i
+ -\sum_{i,j=1,2}\int dx\ u_i(\partial_ju_j)u_i
+\end{equation}
+and since $\nabla\cdot u=0$,
+\begin{equation}
+ I
+ =
+ -I
+\end{equation}
+and so $I=0$.
+Thus,
+\begin{equation}
+ \partial_t E=
+ \int dx\ \left(-\nu|\nabla u|^2+ug\right)
+ =
+ \sum_{k\in\mathbb Z^2}\left(-4\pi^2\nu k^2|\hat u_k|^2+\hat u_{-k}\hat g_k\right)
+ .
+\end{equation}
+Furthermore,
+\begin{equation}
+ \sum_{k\in\mathbb Z^2}k^2|\hat u_k|^2\geqslant
+ \sum_{k\in\mathbb Z^2}|\hat u_k|^2-|\hat u_0|^2
+ =2E-|\hat u_0|^2
+\end{equation}
+so
+\begin{equation}
+ \partial_t E\leqslant -8\pi^2\nu E+4\pi^2\nu\hat u_0^2+\sum_{k\in\mathbb Z^2}\hat u_{-k}\hat g_k
+ \leqslant
+ -8\pi^2\nu E+4\pi^2\nu\hat u_0^2+
+ \|\hat g\|_2\sqrt{2E}
+ .
+\end{equation}
+In particular, if $\hat u_0=0$ (which corresponds to keeping the center of mass fixed),
+\begin{equation}
+ \partial_t E\leqslant -8\pi^2\nu E+\|\hat g\|_2\sqrt{2E}
+ .
+\end{equation}
+Now, if $8\pi^2\nu\sqrt E<\sqrt2\|\hat g\|_2$, then
+\begin{equation}
+ \frac{\partial_t E}{-8\pi^2\nu E+\|\hat g\|_2\sqrt{2E}}\leqslant1
+\end{equation}
+and so
+\begin{equation}
+ \frac{\log(1-\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(t)})}{-4\pi^2\nu}\leqslant t+
+ \frac{\log(1-\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(0)})}{-4\pi^2\nu}
+\end{equation}
+and
+\begin{equation}
+ E(t)
+ \leqslant
+ \left(
+ \frac{\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-4\pi^2\nu t})
+ +e^{-4\pi^2\nu t}\sqrt{E(0)}
+ \right)^2
+ .
+\end{equation}
+If $8\pi^2\nu\sqrt E>\sqrt2\|\hat g\|_2$,
+\begin{equation}
+ \frac{\partial_t E}{-8\pi^2\nu E+\|\hat g\|_2\sqrt{2E}}\geqslant1
+\end{equation}
+and so
+\begin{equation}
+ \frac{\log(\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(t)}-1)}{-4\pi^2\nu}\geqslant t+
+ \frac{\log(\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(0)})-1}{-4\pi^2\nu}
+\end{equation}
+and
+\begin{equation}
+ E(t)
+ \leqslant
+ \left(
+ \frac{\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-4\pi^2\nu t})
+ +e^{-4\pi^2\nu t}\sqrt{E(0)}
+ \right)^2
+ .
+\end{equation}
+\bigskip
+
+\point{\bf Enstrophy}.
+The enstrophy is defined as
+\begin{equation}
+ \mathcal En(t)=\int dx\ |\nabla u|^2
+ =4\pi^2\sum_{k\in\mathbb Z^2}k^2|\hat u_k|^2
+ .
+\end{equation}
\vfill
\eject
@@ -135,5 +245,4 @@ Therefore,
\IfFileExists{bibliography/bibliography.tex}{\input bibliography/bibliography.tex}{}
\end{thebibliography}
-
\end{document}