Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Jauslin_gmathphys_2023.tex')
-rw-r--r--Jauslin_gmathphys_2023.tex552
1 files changed, 552 insertions, 0 deletions
diff --git a/Jauslin_gmathphys_2023.tex b/Jauslin_gmathphys_2023.tex
new file mode 100644
index 0000000..55e7fb5
--- /dev/null
+++ b/Jauslin_gmathphys_2023.tex
@@ -0,0 +1,552 @@
+\documentclass{ian-presentation}
+
+\usepackage[hidelinks]{hyperref}
+\usepackage{graphicx}
+\usepackage{xcolor}
+\usepackage{amsmath}
+\usepackage{array}
+\usepackage{ulem}
+
+
+\definecolor{highlight}{HTML}{981414}
+\long\def\high#1{{\color{highlight}#1}}
+
+\begin{document}
+\pagestyle{empty}
+\hbox{}\vfil
+\bf\Large
+\hfil Bell's inequalities\par
+\smallskip
+\hfil \large and non-locality\par
+\vfil
+\large
+\hfil Ian Jauslin
+\rm\normalsize
+\vfil
+Youtube channel: {\tt \href{https://www.youtube.com/@ianjauslin9430}{ianjauslin}}
+\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
+\eject
+
+\setcounter{page}1
+\pagestyle{plain}
+
+\title{Introduction}
+\begin{itemize}
+ \item
+ Bell's inequalities:
+ \href{https://link.aps.org/pdf/10.1103/PhysicsPhysiqueFizika.1.195}{[Bell, 1964]},
+ \href{https://doi.org/10.1103/PhysRevLett.23.880}{[Clauser, Horne, Shimony, Holt, 1969]},\par
+ \href{https://cds.cern.ch/record/980036/files/197508125.pdf}{[Bell, 1975]}...
+
+ \item
+ Prove that quantum mechanics is a \high{non-local} theory.
+
+ \item
+ Actually, they are extremely general, and only assume some carefully chosen assumptions about the probabilistic nature of quantum theory.
+
+ \item
+ Often characterized as forbidding ``local hidden variable theories'', as we shall see, this is not exactly untrue, but is misleading.
+
+ \item
+ Nobel prize 2022: Aspect, Clauser, Zeilinger: experimental verification of the predictions of quantum mehcanics.
+
+ \item
+ Reference: \high{\href{http://www.scholarpedia.org/article/Bell\%27s_theorem}{{\it Scholarpedia} article by Goldstein, Norsen, Tausk, Zanghi.}}
+\end{itemize}
+
+\vfill
+\eject
+
+\hbox{}
+\vfill
+\hfil{\bf\Large Part I}\par\bigskip
+\hfil{\bf\Large Bell, 1964}
+\vfill
+\eject
+
+\title{Bell's theorem}
+\begin{itemize}
+ \item
+ Step 1: the EPR argument: \href{https://doi.org/10.1103/PhysRev.47.777}{[Einstein, Podolsky, Rosen, 1935]}.
+\end{itemize}
+\vfill
+\eject
+
+\hfil
+\includegraphics[trim=10 1in 2in 2in, clip, height=\textheight]{epr.pdf}
+\eject
+
+\title{EPR}
+\begin{itemize}
+ \item
+ Two observers at distance $\Delta x$ measure the spin of electrons.
+
+ \item
+ Electron spin: can be measured in any \high{direction} in $\mathcal S^2$, returns \high{$+1$ or $-1$}.
+
+ \item
+ Before measurement, the electrons are in an \high{entangled state}: they are \high{anticorrelated} (if one returns $+1$, the other returns $-1$).
+
+ \item
+ In the usual approach to quantum mechanics, observables \high{do not have values before they are measured}.
+
+ \item
+ The observers perform their measurement at the same time.
+ \high{If the world were local}, then, since the observers are spatially separated, one measurement cannot affect the other.
+
+ \item
+ But the outcomes are \high{perfectly anticorrelated}.
+ Therefore, the outcomes had to be \high{determined before} the measurement was done (``hidden variables'').
+\end{itemize}
+\vfill
+\eject
+
+\title{Bell's theorem}
+\begin{itemize}
+ \item
+ Step 1: the EPR argument: \href{https://doi.org/10.1103/PhysRev.47.777}{[Einstein, Podolsky, Rosen, 1935]}:
+ $$
+ \boxed{\mathrm{QM\ is\ local}\quad\Longrightarrow\quad \mathrm{observables\ have\ predetermined\ values}}
+ $$
+
+ \item
+ Step 2: Bell's inequality.
+\end{itemize}
+\vfill
+\eject
+
+\hfil
+\includegraphics[trim=10 1in 2in 2in, clip, height=\textheight]{epr.pdf}
+\eject
+
+\title{Bell's inequality (pigeonhole)}
+\vskip-15pt
+\begin{itemize}
+ \item
+ In the EPR setting, the observers each make three measurements (e.g. choosing three different directions of spin).
+ The outcomes of the measurements are \high{random}.
+
+ \item
+ We \high{assume} that the outcomes of the measurements \high{exist} independently of the measurement (\high{predetermined values}).
+ In other words, we can represent the outcome of measurements as random variables that exist \high{simultaneously}:
+ $$
+ Z_1^{(A)},Z_2^{(A)},Z_3^{(A)}\in\{-1,+1\}
+ ,\quad
+ Z_1^{(B)},Z_2^{(B)},Z_3^{(B)}\in\{-1,+1\}
+ $$
+ that are distributed according to a probability distribution $\mathbb P$.
+
+ \item
+ We assume \high{perfect anticorrelation}:
+ $$
+ \mathbb P(Z_i^{(A)}\neq Z_i^{(B)})=1
+ .
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Bell's inequality (pigeonhole)}
+\begin{itemize}
+ \item
+ By the pigeonhole principle, at least two of the measurements must give the same answer:
+ $$
+ \mathbb P(Z_1^{(A)}= Z_2^{(A)})
+ +
+ \mathbb P(Z_1^{(A)}= Z_3^{(A)})
+ +
+ \mathbb P(Z_2^{(A)}= Z_3^{(A)})
+ \geqslant 1
+ $$
+
+ \item
+ Since $A$ and $B$ are anticorrelated: $\mathbb P(Z_i^{(A)}=Z_j^{(A)})=\mathbb P(Z_i^{(A)}\neq Z_j^{(B)})$, so
+ $$\boxed{
+ \mathbb P(Z_1^{(A)}\neq Z_2^{(B)})
+ +
+ \mathbb P(Z_1^{(A)}\neq Z_3^{(B)})
+ +
+ \mathbb P(Z_2^{(A)}\neq Z_3^{(B)})
+ \geqslant 1
+ }$$
+\end{itemize}
+\vfill
+\eject
+
+\title{Bell's theorem}
+\begin{itemize}
+ \item
+ Step 1: the EPR argument: \href{https://doi.org/10.1103/PhysRev.47.777}{[Einstein, Podolsky, Rosen, 1935]}:
+ $$
+ \boxed{\mathrm{QM\ is\ local}\quad\Longrightarrow\quad \mathrm{spins\ have\ predetermined\ values}}
+ $$
+
+ \item
+ Step 2: Bell's inequality:
+ $$\boxed{
+ \begin{array}{l}
+ \mathrm{spins\ have\ predetermined\ values}
+ \Longrightarrow\\
+ \hskip30pt\Longrightarrow
+ \mathbb P(Z_1^{(A)}\neq Z_2^{(B)})
+ +
+ \mathbb P(Z_1^{(A)}\neq Z_3^{(B)})
+ +
+ \mathbb P(Z_2^{(A)}\neq Z_3^{(B)})
+ \geqslant 1
+ \end{array}
+ }$$
+
+ \item
+ Step 3: According to the laws of quantum mechanics,
+\end{itemize}
+\vfill
+\eject
+
+\title{Quantum mechanical prediction}
+\begin{itemize}
+ \item
+ Suppose the three measurements are done at angles $\frac{2\pi}3$ from each other, then, for $i\neq j$,
+ $$
+ \mathbb P(Z_i^{(A)}\neq Z_j^{(B)})=\frac{1+\cos\frac{2\pi}3}2=\frac 14
+ .
+ $$
+
+ \item
+ Therefore,
+ $$
+ \mathbb P(Z_1^{(A)}\neq Z_2^{(B)})
+ +
+ \mathbb P(Z_1^{(A)}\neq Z_3^{(B)})
+ +
+ \mathbb P(Z_2^{(A)}\neq Z_3^{(B)})
+ =\frac34<1
+ .
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Bell's theorem}
+\begin{itemize}
+ \item
+ Step 1: the EPR argument: \href{https://doi.org/10.1103/PhysRev.47.777}{[Einstein, Podolsky, Rosen, 1935]}:
+ $$
+ \boxed{\mathrm{QM\ is\ local}\quad\Longrightarrow\quad \mathrm{spins\ have\ predetermined\ values}}
+ $$
+
+ \item
+ Step 2: Bell's inequality:
+ $$\boxed{
+ \begin{array}{l}
+ \mathrm{spins\ have\ predetermined\ values}
+ \Longrightarrow\\
+ \hskip30pt\Longrightarrow
+ \mathbb P(Z_1^{(A)}\neq Z_2^{(B)})
+ +
+ \mathbb P(Z_1^{(A)}\neq Z_3^{(B)})
+ +
+ \mathbb P(Z_2^{(A)}\neq Z_3^{(B)})
+ \geqslant 1
+ \end{array}
+ }$$
+
+ \item
+ Step 3: According to the laws of quantum mechanics,
+ $$\boxed{
+ \mathbb P(Z_1^{(A)}\neq Z_2^{(B)})
+ +
+ \mathbb P(Z_1^{(A)}\neq Z_3^{(B)})
+ +
+ \mathbb P(Z_2^{(A)}\neq Z_3^{(B)})
+ \not\geqslant 1
+ }$$
+\end{itemize}
+\vfill
+\eject
+
+\title{Bell's theorem}
+\begin{itemize}
+ \item
+ Step 1: the EPR argument: \href{https://doi.org/10.1103/PhysRev.47.777}{[Einstein, Podolsky, Rosen, 1935]}:
+ $$
+ \boxed{\mathrm{QM\ is\ \high{not}\ local}\quad\Longleftarrow\quad \mathrm{spins\ \high{do\ not}\ have\ predetermined\ values}}
+ $$
+
+ \item
+ Step 2: Bell's inequality:
+ $$\boxed{
+ \begin{array}{l}
+ \mathrm{spins\ \high{do\ not}\ have\ predetermined\ values}
+ \Longleftarrow\\
+ \hskip30pt\Longleftarrow
+ \mathbb P(Z_1^{(A)}\neq Z_2^{(B)})
+ +
+ \mathbb P(Z_1^{(A)}\neq Z_3^{(B)})
+ +
+ \mathbb P(Z_2^{(A)}\neq Z_3^{(B)})
+ \high{\not\geqslant} 1
+ \end{array}
+ }$$
+
+ \item
+ Step 3: According to the laws of quantum mechanics,
+ $$\boxed{
+ \mathbb P(Z_1^{(A)}\neq Z_2^{(B)})
+ +
+ \mathbb P(Z_1^{(A)}\neq Z_3^{(B)})
+ +
+ \mathbb P(Z_2^{(A)}\neq Z_3^{(B)})
+ \not\geqslant 1
+ }$$
+\end{itemize}
+\vfill
+\eject
+
+\title{Reactions to Bell's theorem}
+\begin{itemize}
+ \item
+ The violation of Bell's inequality shows that the values of the spin in different directions do not \high{simultaneously} exist.
+ More generally, the values of \high{non-commuting operators} do not simultaneously exist.
+
+ \item
+ This has lead many to state that Bell's theorem shows there are no \high{hidden variables} in quantum mechanics.
+ This is \high{not true}: it is only true that there non-commuting observables do not simultaneously have values (``no non-contextual hidden variables'').
+
+ \item
+ There \high{is} a theory of quantum mechanics with ``hidden variables'': \high{Bohmian}.
+
+ \item
+ Others have said that Bell's theorem shows there are no \high{local hidden variables} in quantum mechanics.
+ While this is technically true, it misses the point: there is no \high{locality} in quantum mechanics.
+\end{itemize}
+\vfill
+\eject
+
+\title{More general statement}
+\begin{itemize}
+ \item
+ The theorem discussed earlier requires \high{perfect anticorrelation} between spins in an entangled singlet.
+ What if quantum mechanics is only very slightly wrong, and the anticorrelation is not exactly perfect?
+
+ \item
+ The proof of Bell's theorem goes through showing there are no pre-existing values, which has caused some confusion.
+ Can we prove the theorem \high{without any reference to pre-existing values}?
+\end{itemize}
+\vfill
+\eject
+
+
+\hbox{}
+\vfill
+\hfil{\bf\Large Part II}\par\bigskip
+\hfil{\bf\Large Bell, revisited}
+\vfill
+\eject
+
+\hfil
+\includegraphics[trim=10 1in 1in 2in, clip, height=\textheight]{setup.pdf}
+\eject
+
+\title{General setup}
+\begin{itemize}
+ \item
+ Observers $A$ and $B$
+
+ \item
+ Each observer can set a tunable parameter on their measurement device: $\alpha,\beta$ (for instance, the direction of spin).
+
+ \item
+ Outcomes of a measurement: random variables $X_A,X_B\in[-1,1]$, distributed according to a \high{joint} probability distribution $\mathbb P_{\alpha,\beta}$ that \high{depends on $\alpha,\beta$} (the outcomes of measurements with different parameters $\alpha,\beta$ are not required to simultaneously exist).
+\end{itemize}
+\vfill
+\eject
+
+\title{Locality}
+\begin{itemize}
+ \item
+ Naive definition:
+ $$
+ \mathbb P_{\alpha,\beta}(X_A,X_B)
+ =\mathbb P_\alpha^{(A)}(X_A)
+ \mathbb P_\beta^{(B)}(X_B)
+ $$
+
+ \item
+ This does not allow for any correlation between $A$ and $B$ (in particular, it excludes the anticorrelation considered earlier).
+\end{itemize}
+\vfill
+\eject
+
+\title{General setup}
+\begin{itemize}
+ \item
+ Observers $A$ and $B$
+
+ \item
+ Parameters $\alpha,\beta$.
+
+ \item
+ Outcomes of a measurement: random variables $X_A,X_B\in[-1,1]$, $\sim\mathbb P_{\alpha,\beta}$.
+
+ \item
+ Allow for an extra parameter $\lambda$, whose value is shared by both $A$ and $B$ and may affect the outcome of the measurements.
+ For instance, $\lambda$ could be a shared state of the electrons (e.g. an anticorrelated entangled state).
+ $\lambda$ is a random variable distributed according to $\mathbb Q$ (independent of $\alpha,\beta$).
+
+ \item
+ Locality:
+ $$
+ \mathbb P_{\alpha,\beta}(X_A,X_B|\lambda)
+ =\mathbb P_\alpha^{(A)}(X_A|\lambda)
+ \mathbb P_\beta^{(B)}(X_B|\lambda)
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Bell's inequality}
+\vfill
+{\bf Theorem}: Under these assumptions, $\forall\alpha,\alpha',\beta,\beta'$,
+$$
+ |\mathbb E_{\alpha,\beta}(X_AX_B)
+ -\mathbb E_{\alpha,\beta'}(X_AX_B)|
+ +
+ |\mathbb E_{\alpha',\beta}(X_AX_B)
+ +\mathbb E_{\alpha',\beta'}(X_AX_B)|
+ \leqslant 2
+$$
+where $\mathbb E_{\alpha,\beta}$ is the expectation value in the probability distribution $\mathbb P_{\alpha,\beta}$.
+\vfill
+\eject
+
+\title{Proof of Bell's inequality}
+$$
+ \mathbb E_{\alpha,\beta}(X_AX_B)
+ =\int d\mathbb Q(\lambda)\ \mathbb E_{\alpha,\beta}(X_AX_B|\lambda)
+$$
+by the locality condition,
+$$
+ \mathbb E_{\alpha,\beta}(X_AX_B|\lambda)
+ =
+ \mathbb E_{\alpha}^{(A)}(X_A|\lambda)
+ \mathbb E_{\beta}^{(B)}(X_B|\lambda)
+$$
+so
+$$
+ |\mathbb E_{\alpha,\beta}(X_AX_B)
+ \pm\mathbb E_{\alpha,\beta'}(X_AX_B)|
+ \leqslant
+ \int d\mathbb Q(\lambda)\
+ \left|\mathbb E_\alpha^{(A)}(X_A|\lambda)\right|
+ \left|\mathbb E_\beta^{(B)}(X_B|\lambda)\pm\mathbb E_{\beta'}^{(B)}(X_B|\lambda)\right|
+ .
+$$
+Since $|X_A|\leqslant 1$, $|\mathbb E_\alpha^{(A)}(X_A|\lambda)|\leqslant 1$.
+\vfill
+\eject
+
+\title{Proof of Bell's inequality}
+If $x:=\mathbb E_\beta^{(B)}(X_B|\lambda)$ and $y:=\mathbb E_{\beta'}^{(B)}(X_B|\lambda)$, then
+$$
+ \begin{array}{>\displaystyle l}
+ |\mathbb E_{\alpha,\beta}(X_AX_B)
+ -\mathbb E_{\alpha,\beta'}(X_AX_B)|
+ +
+ |\mathbb E_{\alpha',\beta}(X_AX_B)
+ +\mathbb E_{\alpha',\beta'}(X_AX_B)|
+ \leqslant\\\hfill\leqslant
+ \int d\mathbb Q(\lambda)\
+ |x-y|+|x+y|
+ \end{array}
+$$
+and since $|x|\leqslant 1$ and $|y|\leqslant 1$,
+$$
+ |x-y|+|x+y|\leqslant 2
+ .
+$$
+\hfill$\square$
+\vfill
+\eject
+
+\title{Quantum mechanical prediction}
+\begin{itemize}
+ \item
+ $\alpha,\beta\in\mathcal S^2$: direction of spin:
+ $$
+ \mathbb E_{\alpha,\beta}(X_AX_B)=-\alpha\cdot\beta
+ .
+ $$
+
+ \item
+ $$
+ \begin{array}{>\displaystyle l}
+ |\mathbb E_{\alpha,\beta}(X_AX_B)
+ -\mathbb E_{\alpha,\beta'}(X_AX_B)|
+ +
+ |\mathbb E_{\alpha',\beta}(X_AX_B)
+ +\mathbb E_{\alpha',\beta'}(X_AX_B)|
+ =\\[0.3cm]\hfill=
+ |\alpha\cdot(\beta-\beta')|+|\alpha'\cdot(\beta+\beta')|
+ \end{array}
+ $$
+
+ \item Choose $\beta'\cdot\beta=0$, $\alpha=(\beta-\beta')/\sqrt2$, $\alpha'=(\beta+\beta')/\sqrt2$:
+ $$
+ |\mathbb E_{\alpha,\beta}(X_AX_B)
+ -\mathbb E_{\alpha,\beta'}(X_AX_B)|
+ +
+ |\mathbb E_{\alpha',\beta}(X_AX_B)
+ +\mathbb E_{\alpha',\beta'}(X_AX_B)|
+ =2\sqrt2>2
+ .
+ $$
+
+ \item
+ \high{Quantum mechanics violates Bell's inequality}.
+\end{itemize}
+\vfill
+\eject
+
+\title{General setup}
+\begin{itemize}
+ \item
+ Observers $A$ and $B$
+
+ \item
+ Parameters $\alpha,\beta$.
+
+ \item
+ Outcomes of a measurement: random variables $X_A,X_B\in[-1,1]$, $\sim\mathbb P_{\alpha,\beta}$.
+
+ \item
+ Allow for an extra parameter $\lambda$, distributed according to $\mathbb Q$ (independent of $\alpha,\beta$).
+
+ \item
+ \high{\sout{Locality}}.
+\end{itemize}
+\vfill
+\eject
+
+\title{EPR}
+{\bf Theorem}:
+If $X_A,X_B\in\{-1,1\}$, if
+$$
+ \mathbb P_{\alpha,\alpha}(X_A\neq X_B)=1
+$$
+and $\mathbb P$ is \high{local}, then $\forall\lambda,\alpha$, there exists $Z_\alpha(\lambda)\in\{-1,1\}$ such that
+$$
+ \mathbb P_{\alpha,\beta}(X_A=Z_\alpha(\lambda)|\lambda)
+ =\mathbb P_{\alpha,\beta}(X_B=-Z_\alpha(\lambda)|\lambda)
+ =1
+$$
+and
+$$
+ \mathbb P_{\alpha}^{(A)}(X_A=Z_\alpha(\lambda)|\lambda)
+ =\mathbb P_{\beta}^{(B)}(X_B=-Z_\alpha(\lambda)|\lambda)
+ =1
+ .
+$$
+
+
+\end{document}