Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Jauslin_gmathphys_2023.tex552
-rw-r--r--Makefile42
-rw-r--r--README33
-rw-r--r--figs/alice_blrrrb.fig/epr.pdfbin0 -> 295977 bytes
-rw-r--r--figs/alice_blrrrb.fig/setup.pdfbin0 -> 251573 bytes
-rw-r--r--libs/ian-presentation.cls189
6 files changed, 816 insertions, 0 deletions
diff --git a/Jauslin_gmathphys_2023.tex b/Jauslin_gmathphys_2023.tex
new file mode 100644
index 0000000..55e7fb5
--- /dev/null
+++ b/Jauslin_gmathphys_2023.tex
@@ -0,0 +1,552 @@
+\documentclass{ian-presentation}
+
+\usepackage[hidelinks]{hyperref}
+\usepackage{graphicx}
+\usepackage{xcolor}
+\usepackage{amsmath}
+\usepackage{array}
+\usepackage{ulem}
+
+
+\definecolor{highlight}{HTML}{981414}
+\long\def\high#1{{\color{highlight}#1}}
+
+\begin{document}
+\pagestyle{empty}
+\hbox{}\vfil
+\bf\Large
+\hfil Bell's inequalities\par
+\smallskip
+\hfil \large and non-locality\par
+\vfil
+\large
+\hfil Ian Jauslin
+\rm\normalsize
+\vfil
+Youtube channel: {\tt \href{https://www.youtube.com/@ianjauslin9430}{ianjauslin}}
+\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
+\eject
+
+\setcounter{page}1
+\pagestyle{plain}
+
+\title{Introduction}
+\begin{itemize}
+ \item
+ Bell's inequalities:
+ \href{https://link.aps.org/pdf/10.1103/PhysicsPhysiqueFizika.1.195}{[Bell, 1964]},
+ \href{https://doi.org/10.1103/PhysRevLett.23.880}{[Clauser, Horne, Shimony, Holt, 1969]},\par
+ \href{https://cds.cern.ch/record/980036/files/197508125.pdf}{[Bell, 1975]}...
+
+ \item
+ Prove that quantum mechanics is a \high{non-local} theory.
+
+ \item
+ Actually, they are extremely general, and only assume some carefully chosen assumptions about the probabilistic nature of quantum theory.
+
+ \item
+ Often characterized as forbidding ``local hidden variable theories'', as we shall see, this is not exactly untrue, but is misleading.
+
+ \item
+ Nobel prize 2022: Aspect, Clauser, Zeilinger: experimental verification of the predictions of quantum mehcanics.
+
+ \item
+ Reference: \high{\href{http://www.scholarpedia.org/article/Bell\%27s_theorem}{{\it Scholarpedia} article by Goldstein, Norsen, Tausk, Zanghi.}}
+\end{itemize}
+
+\vfill
+\eject
+
+\hbox{}
+\vfill
+\hfil{\bf\Large Part I}\par\bigskip
+\hfil{\bf\Large Bell, 1964}
+\vfill
+\eject
+
+\title{Bell's theorem}
+\begin{itemize}
+ \item
+ Step 1: the EPR argument: \href{https://doi.org/10.1103/PhysRev.47.777}{[Einstein, Podolsky, Rosen, 1935]}.
+\end{itemize}
+\vfill
+\eject
+
+\hfil
+\includegraphics[trim=10 1in 2in 2in, clip, height=\textheight]{epr.pdf}
+\eject
+
+\title{EPR}
+\begin{itemize}
+ \item
+ Two observers at distance $\Delta x$ measure the spin of electrons.
+
+ \item
+ Electron spin: can be measured in any \high{direction} in $\mathcal S^2$, returns \high{$+1$ or $-1$}.
+
+ \item
+ Before measurement, the electrons are in an \high{entangled state}: they are \high{anticorrelated} (if one returns $+1$, the other returns $-1$).
+
+ \item
+ In the usual approach to quantum mechanics, observables \high{do not have values before they are measured}.
+
+ \item
+ The observers perform their measurement at the same time.
+ \high{If the world were local}, then, since the observers are spatially separated, one measurement cannot affect the other.
+
+ \item
+ But the outcomes are \high{perfectly anticorrelated}.
+ Therefore, the outcomes had to be \high{determined before} the measurement was done (``hidden variables'').
+\end{itemize}
+\vfill
+\eject
+
+\title{Bell's theorem}
+\begin{itemize}
+ \item
+ Step 1: the EPR argument: \href{https://doi.org/10.1103/PhysRev.47.777}{[Einstein, Podolsky, Rosen, 1935]}:
+ $$
+ \boxed{\mathrm{QM\ is\ local}\quad\Longrightarrow\quad \mathrm{observables\ have\ predetermined\ values}}
+ $$
+
+ \item
+ Step 2: Bell's inequality.
+\end{itemize}
+\vfill
+\eject
+
+\hfil
+\includegraphics[trim=10 1in 2in 2in, clip, height=\textheight]{epr.pdf}
+\eject
+
+\title{Bell's inequality (pigeonhole)}
+\vskip-15pt
+\begin{itemize}
+ \item
+ In the EPR setting, the observers each make three measurements (e.g. choosing three different directions of spin).
+ The outcomes of the measurements are \high{random}.
+
+ \item
+ We \high{assume} that the outcomes of the measurements \high{exist} independently of the measurement (\high{predetermined values}).
+ In other words, we can represent the outcome of measurements as random variables that exist \high{simultaneously}:
+ $$
+ Z_1^{(A)},Z_2^{(A)},Z_3^{(A)}\in\{-1,+1\}
+ ,\quad
+ Z_1^{(B)},Z_2^{(B)},Z_3^{(B)}\in\{-1,+1\}
+ $$
+ that are distributed according to a probability distribution $\mathbb P$.
+
+ \item
+ We assume \high{perfect anticorrelation}:
+ $$
+ \mathbb P(Z_i^{(A)}\neq Z_i^{(B)})=1
+ .
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Bell's inequality (pigeonhole)}
+\begin{itemize}
+ \item
+ By the pigeonhole principle, at least two of the measurements must give the same answer:
+ $$
+ \mathbb P(Z_1^{(A)}= Z_2^{(A)})
+ +
+ \mathbb P(Z_1^{(A)}= Z_3^{(A)})
+ +
+ \mathbb P(Z_2^{(A)}= Z_3^{(A)})
+ \geqslant 1
+ $$
+
+ \item
+ Since $A$ and $B$ are anticorrelated: $\mathbb P(Z_i^{(A)}=Z_j^{(A)})=\mathbb P(Z_i^{(A)}\neq Z_j^{(B)})$, so
+ $$\boxed{
+ \mathbb P(Z_1^{(A)}\neq Z_2^{(B)})
+ +
+ \mathbb P(Z_1^{(A)}\neq Z_3^{(B)})
+ +
+ \mathbb P(Z_2^{(A)}\neq Z_3^{(B)})
+ \geqslant 1
+ }$$
+\end{itemize}
+\vfill
+\eject
+
+\title{Bell's theorem}
+\begin{itemize}
+ \item
+ Step 1: the EPR argument: \href{https://doi.org/10.1103/PhysRev.47.777}{[Einstein, Podolsky, Rosen, 1935]}:
+ $$
+ \boxed{\mathrm{QM\ is\ local}\quad\Longrightarrow\quad \mathrm{spins\ have\ predetermined\ values}}
+ $$
+
+ \item
+ Step 2: Bell's inequality:
+ $$\boxed{
+ \begin{array}{l}
+ \mathrm{spins\ have\ predetermined\ values}
+ \Longrightarrow\\
+ \hskip30pt\Longrightarrow
+ \mathbb P(Z_1^{(A)}\neq Z_2^{(B)})
+ +
+ \mathbb P(Z_1^{(A)}\neq Z_3^{(B)})
+ +
+ \mathbb P(Z_2^{(A)}\neq Z_3^{(B)})
+ \geqslant 1
+ \end{array}
+ }$$
+
+ \item
+ Step 3: According to the laws of quantum mechanics,
+\end{itemize}
+\vfill
+\eject
+
+\title{Quantum mechanical prediction}
+\begin{itemize}
+ \item
+ Suppose the three measurements are done at angles $\frac{2\pi}3$ from each other, then, for $i\neq j$,
+ $$
+ \mathbb P(Z_i^{(A)}\neq Z_j^{(B)})=\frac{1+\cos\frac{2\pi}3}2=\frac 14
+ .
+ $$
+
+ \item
+ Therefore,
+ $$
+ \mathbb P(Z_1^{(A)}\neq Z_2^{(B)})
+ +
+ \mathbb P(Z_1^{(A)}\neq Z_3^{(B)})
+ +
+ \mathbb P(Z_2^{(A)}\neq Z_3^{(B)})
+ =\frac34<1
+ .
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Bell's theorem}
+\begin{itemize}
+ \item
+ Step 1: the EPR argument: \href{https://doi.org/10.1103/PhysRev.47.777}{[Einstein, Podolsky, Rosen, 1935]}:
+ $$
+ \boxed{\mathrm{QM\ is\ local}\quad\Longrightarrow\quad \mathrm{spins\ have\ predetermined\ values}}
+ $$
+
+ \item
+ Step 2: Bell's inequality:
+ $$\boxed{
+ \begin{array}{l}
+ \mathrm{spins\ have\ predetermined\ values}
+ \Longrightarrow\\
+ \hskip30pt\Longrightarrow
+ \mathbb P(Z_1^{(A)}\neq Z_2^{(B)})
+ +
+ \mathbb P(Z_1^{(A)}\neq Z_3^{(B)})
+ +
+ \mathbb P(Z_2^{(A)}\neq Z_3^{(B)})
+ \geqslant 1
+ \end{array}
+ }$$
+
+ \item
+ Step 3: According to the laws of quantum mechanics,
+ $$\boxed{
+ \mathbb P(Z_1^{(A)}\neq Z_2^{(B)})
+ +
+ \mathbb P(Z_1^{(A)}\neq Z_3^{(B)})
+ +
+ \mathbb P(Z_2^{(A)}\neq Z_3^{(B)})
+ \not\geqslant 1
+ }$$
+\end{itemize}
+\vfill
+\eject
+
+\title{Bell's theorem}
+\begin{itemize}
+ \item
+ Step 1: the EPR argument: \href{https://doi.org/10.1103/PhysRev.47.777}{[Einstein, Podolsky, Rosen, 1935]}:
+ $$
+ \boxed{\mathrm{QM\ is\ \high{not}\ local}\quad\Longleftarrow\quad \mathrm{spins\ \high{do\ not}\ have\ predetermined\ values}}
+ $$
+
+ \item
+ Step 2: Bell's inequality:
+ $$\boxed{
+ \begin{array}{l}
+ \mathrm{spins\ \high{do\ not}\ have\ predetermined\ values}
+ \Longleftarrow\\
+ \hskip30pt\Longleftarrow
+ \mathbb P(Z_1^{(A)}\neq Z_2^{(B)})
+ +
+ \mathbb P(Z_1^{(A)}\neq Z_3^{(B)})
+ +
+ \mathbb P(Z_2^{(A)}\neq Z_3^{(B)})
+ \high{\not\geqslant} 1
+ \end{array}
+ }$$
+
+ \item
+ Step 3: According to the laws of quantum mechanics,
+ $$\boxed{
+ \mathbb P(Z_1^{(A)}\neq Z_2^{(B)})
+ +
+ \mathbb P(Z_1^{(A)}\neq Z_3^{(B)})
+ +
+ \mathbb P(Z_2^{(A)}\neq Z_3^{(B)})
+ \not\geqslant 1
+ }$$
+\end{itemize}
+\vfill
+\eject
+
+\title{Reactions to Bell's theorem}
+\begin{itemize}
+ \item
+ The violation of Bell's inequality shows that the values of the spin in different directions do not \high{simultaneously} exist.
+ More generally, the values of \high{non-commuting operators} do not simultaneously exist.
+
+ \item
+ This has lead many to state that Bell's theorem shows there are no \high{hidden variables} in quantum mechanics.
+ This is \high{not true}: it is only true that there non-commuting observables do not simultaneously have values (``no non-contextual hidden variables'').
+
+ \item
+ There \high{is} a theory of quantum mechanics with ``hidden variables'': \high{Bohmian}.
+
+ \item
+ Others have said that Bell's theorem shows there are no \high{local hidden variables} in quantum mechanics.
+ While this is technically true, it misses the point: there is no \high{locality} in quantum mechanics.
+\end{itemize}
+\vfill
+\eject
+
+\title{More general statement}
+\begin{itemize}
+ \item
+ The theorem discussed earlier requires \high{perfect anticorrelation} between spins in an entangled singlet.
+ What if quantum mechanics is only very slightly wrong, and the anticorrelation is not exactly perfect?
+
+ \item
+ The proof of Bell's theorem goes through showing there are no pre-existing values, which has caused some confusion.
+ Can we prove the theorem \high{without any reference to pre-existing values}?
+\end{itemize}
+\vfill
+\eject
+
+
+\hbox{}
+\vfill
+\hfil{\bf\Large Part II}\par\bigskip
+\hfil{\bf\Large Bell, revisited}
+\vfill
+\eject
+
+\hfil
+\includegraphics[trim=10 1in 1in 2in, clip, height=\textheight]{setup.pdf}
+\eject
+
+\title{General setup}
+\begin{itemize}
+ \item
+ Observers $A$ and $B$
+
+ \item
+ Each observer can set a tunable parameter on their measurement device: $\alpha,\beta$ (for instance, the direction of spin).
+
+ \item
+ Outcomes of a measurement: random variables $X_A,X_B\in[-1,1]$, distributed according to a \high{joint} probability distribution $\mathbb P_{\alpha,\beta}$ that \high{depends on $\alpha,\beta$} (the outcomes of measurements with different parameters $\alpha,\beta$ are not required to simultaneously exist).
+\end{itemize}
+\vfill
+\eject
+
+\title{Locality}
+\begin{itemize}
+ \item
+ Naive definition:
+ $$
+ \mathbb P_{\alpha,\beta}(X_A,X_B)
+ =\mathbb P_\alpha^{(A)}(X_A)
+ \mathbb P_\beta^{(B)}(X_B)
+ $$
+
+ \item
+ This does not allow for any correlation between $A$ and $B$ (in particular, it excludes the anticorrelation considered earlier).
+\end{itemize}
+\vfill
+\eject
+
+\title{General setup}
+\begin{itemize}
+ \item
+ Observers $A$ and $B$
+
+ \item
+ Parameters $\alpha,\beta$.
+
+ \item
+ Outcomes of a measurement: random variables $X_A,X_B\in[-1,1]$, $\sim\mathbb P_{\alpha,\beta}$.
+
+ \item
+ Allow for an extra parameter $\lambda$, whose value is shared by both $A$ and $B$ and may affect the outcome of the measurements.
+ For instance, $\lambda$ could be a shared state of the electrons (e.g. an anticorrelated entangled state).
+ $\lambda$ is a random variable distributed according to $\mathbb Q$ (independent of $\alpha,\beta$).
+
+ \item
+ Locality:
+ $$
+ \mathbb P_{\alpha,\beta}(X_A,X_B|\lambda)
+ =\mathbb P_\alpha^{(A)}(X_A|\lambda)
+ \mathbb P_\beta^{(B)}(X_B|\lambda)
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Bell's inequality}
+\vfill
+{\bf Theorem}: Under these assumptions, $\forall\alpha,\alpha',\beta,\beta'$,
+$$
+ |\mathbb E_{\alpha,\beta}(X_AX_B)
+ -\mathbb E_{\alpha,\beta'}(X_AX_B)|
+ +
+ |\mathbb E_{\alpha',\beta}(X_AX_B)
+ +\mathbb E_{\alpha',\beta'}(X_AX_B)|
+ \leqslant 2
+$$
+where $\mathbb E_{\alpha,\beta}$ is the expectation value in the probability distribution $\mathbb P_{\alpha,\beta}$.
+\vfill
+\eject
+
+\title{Proof of Bell's inequality}
+$$
+ \mathbb E_{\alpha,\beta}(X_AX_B)
+ =\int d\mathbb Q(\lambda)\ \mathbb E_{\alpha,\beta}(X_AX_B|\lambda)
+$$
+by the locality condition,
+$$
+ \mathbb E_{\alpha,\beta}(X_AX_B|\lambda)
+ =
+ \mathbb E_{\alpha}^{(A)}(X_A|\lambda)
+ \mathbb E_{\beta}^{(B)}(X_B|\lambda)
+$$
+so
+$$
+ |\mathbb E_{\alpha,\beta}(X_AX_B)
+ \pm\mathbb E_{\alpha,\beta'}(X_AX_B)|
+ \leqslant
+ \int d\mathbb Q(\lambda)\
+ \left|\mathbb E_\alpha^{(A)}(X_A|\lambda)\right|
+ \left|\mathbb E_\beta^{(B)}(X_B|\lambda)\pm\mathbb E_{\beta'}^{(B)}(X_B|\lambda)\right|
+ .
+$$
+Since $|X_A|\leqslant 1$, $|\mathbb E_\alpha^{(A)}(X_A|\lambda)|\leqslant 1$.
+\vfill
+\eject
+
+\title{Proof of Bell's inequality}
+If $x:=\mathbb E_\beta^{(B)}(X_B|\lambda)$ and $y:=\mathbb E_{\beta'}^{(B)}(X_B|\lambda)$, then
+$$
+ \begin{array}{>\displaystyle l}
+ |\mathbb E_{\alpha,\beta}(X_AX_B)
+ -\mathbb E_{\alpha,\beta'}(X_AX_B)|
+ +
+ |\mathbb E_{\alpha',\beta}(X_AX_B)
+ +\mathbb E_{\alpha',\beta'}(X_AX_B)|
+ \leqslant\\\hfill\leqslant
+ \int d\mathbb Q(\lambda)\
+ |x-y|+|x+y|
+ \end{array}
+$$
+and since $|x|\leqslant 1$ and $|y|\leqslant 1$,
+$$
+ |x-y|+|x+y|\leqslant 2
+ .
+$$
+\hfill$\square$
+\vfill
+\eject
+
+\title{Quantum mechanical prediction}
+\begin{itemize}
+ \item
+ $\alpha,\beta\in\mathcal S^2$: direction of spin:
+ $$
+ \mathbb E_{\alpha,\beta}(X_AX_B)=-\alpha\cdot\beta
+ .
+ $$
+
+ \item
+ $$
+ \begin{array}{>\displaystyle l}
+ |\mathbb E_{\alpha,\beta}(X_AX_B)
+ -\mathbb E_{\alpha,\beta'}(X_AX_B)|
+ +
+ |\mathbb E_{\alpha',\beta}(X_AX_B)
+ +\mathbb E_{\alpha',\beta'}(X_AX_B)|
+ =\\[0.3cm]\hfill=
+ |\alpha\cdot(\beta-\beta')|+|\alpha'\cdot(\beta+\beta')|
+ \end{array}
+ $$
+
+ \item Choose $\beta'\cdot\beta=0$, $\alpha=(\beta-\beta')/\sqrt2$, $\alpha'=(\beta+\beta')/\sqrt2$:
+ $$
+ |\mathbb E_{\alpha,\beta}(X_AX_B)
+ -\mathbb E_{\alpha,\beta'}(X_AX_B)|
+ +
+ |\mathbb E_{\alpha',\beta}(X_AX_B)
+ +\mathbb E_{\alpha',\beta'}(X_AX_B)|
+ =2\sqrt2>2
+ .
+ $$
+
+ \item
+ \high{Quantum mechanics violates Bell's inequality}.
+\end{itemize}
+\vfill
+\eject
+
+\title{General setup}
+\begin{itemize}
+ \item
+ Observers $A$ and $B$
+
+ \item
+ Parameters $\alpha,\beta$.
+
+ \item
+ Outcomes of a measurement: random variables $X_A,X_B\in[-1,1]$, $\sim\mathbb P_{\alpha,\beta}$.
+
+ \item
+ Allow for an extra parameter $\lambda$, distributed according to $\mathbb Q$ (independent of $\alpha,\beta$).
+
+ \item
+ \high{\sout{Locality}}.
+\end{itemize}
+\vfill
+\eject
+
+\title{EPR}
+{\bf Theorem}:
+If $X_A,X_B\in\{-1,1\}$, if
+$$
+ \mathbb P_{\alpha,\alpha}(X_A\neq X_B)=1
+$$
+and $\mathbb P$ is \high{local}, then $\forall\lambda,\alpha$, there exists $Z_\alpha(\lambda)\in\{-1,1\}$ such that
+$$
+ \mathbb P_{\alpha,\beta}(X_A=Z_\alpha(\lambda)|\lambda)
+ =\mathbb P_{\alpha,\beta}(X_B=-Z_\alpha(\lambda)|\lambda)
+ =1
+$$
+and
+$$
+ \mathbb P_{\alpha}^{(A)}(X_A=Z_\alpha(\lambda)|\lambda)
+ =\mathbb P_{\beta}^{(B)}(X_B=-Z_\alpha(\lambda)|\lambda)
+ =1
+ .
+$$
+
+
+\end{document}
diff --git a/Makefile b/Makefile
new file mode 100644
index 0000000..5473dbb
--- /dev/null
+++ b/Makefile
@@ -0,0 +1,42 @@
+PROJECTNAME=$(basename $(wildcard *.tex))
+LIBS=$(notdir $(wildcard libs/*))
+FIGS=$(notdir $(wildcard figs/*.fig))
+
+PDFS=$(addsuffix .pdf, $(PROJECTNAME))
+SYNCTEXS=$(addsuffix .synctex.gz, $(PROJECTNAME))
+
+all: $(PROJECTNAME)
+
+$(PROJECTNAME): $(LIBS) $(FIGS)
+ pdflatex -file-line-error $@.tex
+ pdflatex -synctex=1 $@.tex
+
+$(SYNCTEXS): $(LIBS) $(FIGS)
+ pdflatex -synctex=1 $(patsubst %.synctex.gz, %.tex, $@)
+
+
+libs: $(LIBS)
+
+$(LIBS):
+ ln -fs libs/$@ ./
+
+figs: $(FIGS)
+
+$(FIGS):
+ for pdf in $$(find figs/$@/ -name '*.pdf'); do ln -fs "$$pdf" ./ ; done
+
+clean-aux:
+ rm -f $(addsuffix .aux, $(PROJECTNAME))
+ rm -f $(addsuffix .log, $(PROJECTNAME))
+ rm -f $(addsuffix .out, $(PROJECTNAME))
+
+clean-libs:
+ rm -f $(LIBS)
+
+clean-figs:
+ rm -f $(notdir $(wildcard figs/*.fig/*.pdf))
+
+clean-tex:
+ rm -f $(PDFS) $(SYNCTEXS)
+
+clean: clean-aux clean-tex clean-libs clean-figs
diff --git a/README b/README
new file mode 100644
index 0000000..c9e6ad1
--- /dev/null
+++ b/README
@@ -0,0 +1,33 @@
+This directory contains the source files to typeset the presentation, and
+generate the figures. This can be accomplished by running
+ make
+
+This document uses a custom class file, located in the 'libs' directory, which
+defines a number of commands.
+
+
+* Dependencies:
+
+ pdflatex
+ TeXlive packages:
+ amsfonts
+ amsmath
+ array
+ graphics
+ hyperref
+ latex
+ xcolor
+ ulem
+ GNU make
+
+* Files:
+
+ Jauslin_gmathphys_2023.tex:
+ main LaTeX file
+
+ libs:
+ custom LaTeX class file
+
+ figs:
+ figures
+
diff --git a/figs/alice_blrrrb.fig/epr.pdf b/figs/alice_blrrrb.fig/epr.pdf
new file mode 100644
index 0000000..a2b746b
--- /dev/null
+++ b/figs/alice_blrrrb.fig/epr.pdf
Binary files differ
diff --git a/figs/alice_blrrrb.fig/setup.pdf b/figs/alice_blrrrb.fig/setup.pdf
new file mode 100644
index 0000000..16dda86
--- /dev/null
+++ b/figs/alice_blrrrb.fig/setup.pdf
Binary files differ
diff --git a/libs/ian-presentation.cls b/libs/ian-presentation.cls
new file mode 100644
index 0000000..3b25a44
--- /dev/null
+++ b/libs/ian-presentation.cls
@@ -0,0 +1,189 @@
+%%
+%% Ian's presentation class
+%%
+
+%% TeX format
+\NeedsTeXFormat{LaTeX2e}[1995/12/01]
+
+%% class name
+\ProvidesClass{ian-presentation}[2017/09/29]
+
+\def\ian@defaultoptions{
+ \pagestyle{plain}
+ \RequirePackage{color}
+ \RequirePackage{amssymb}
+}
+
+%% paper dimensions
+%\setlength\paperheight{240pt}
+%\setlength\paperwidth{427pt}
+\setlength\paperheight{243pt}
+\setlength\paperwidth{432pt}
+
+%% fonts
+\input{size11.clo}
+\DeclareOldFontCommand{\rm}{\normalfont\rmfamily}{\mathrm}
+\DeclareOldFontCommand{\sf}{\normalfont\sffamily}{\mathsf}
+\DeclareOldFontCommand{\tt}{\normalfont\ttfamily}{\mathtt}
+\DeclareOldFontCommand{\bf}{\normalfont\bfseries}{\mathbf}
+\DeclareOldFontCommand{\it}{\normalfont\itshape}{\mathit}
+
+%% text dimensions
+\textheight=208pt
+\textwidth=384pt
+\hoffset=-1in
+\voffset=-1in
+\oddsidemargin=24pt
+\evensidemargin=24pt
+\topmargin=8pt
+\headheight=0pt
+\headsep=0pt
+\marginparsep=0pt
+\marginparwidth=0pt
+\footskip=16pt
+
+
+%% remove default skips
+\parindent=0pt
+\parskip=0pt
+\baselineskip=0pt
+
+%% something is wrong with \thepage, redefine it
+\gdef\thepage{\the\c@page}
+
+%% correct vertical alignment at the end of a document
+\AtEndDocument{
+ % save total slide count
+ \immediate\write\@auxout{\noexpand\gdef\noexpand\slidecount{\thepage}}
+ \vfill
+ \eject
+}
+
+
+%% footer
+\def\ps@plain{
+ \def\@oddhead{}
+ \def\@evenhead{\@oddhead}
+ \def\@oddfoot{\tiny\hfill\thepage/\safe\slidecount\hfill}
+ \def\@evenfoot{\@oddfoot}
+}
+\def\ps@empty{
+ \def\@oddhead{}
+ \def\@evenhead{\@oddhead}
+ \def\@oddfoot{}
+ \def\@evenfoot{\@oddfoot}
+}
+
+
+%% title of slide
+\def\title#1{
+ \hfil{\bf\large #1}\par
+ \hfil\vrule width0.75\textwidth height0.3pt\par
+ \vskip5pt
+}
+
+
+%% hyperlinks
+% hyperlinkcounter
+\newcounter{lncount}
+% hyperref anchor
+\def\hrefanchor{%
+\stepcounter{lncount}%
+\hypertarget{ln.\thelncount}{}%
+}
+
+%% define a command and write it to aux file
+\def\outdef#1#2{%
+ % define command%
+ \expandafter\xdef\csname #1\endcsname{#2}%
+ % hyperlink number%
+ \expandafter\xdef\csname #1@hl\endcsname{\thelncount}%
+ % write command to aux%
+ \immediate\write\@auxout{\noexpand\expandafter\noexpand\gdef\noexpand\csname #1\endcsname{\csname #1\endcsname}}%
+ \immediate\write\@auxout{\noexpand\expandafter\noexpand\gdef\noexpand\csname #1@hl\endcsname{\thelncount}}%
+}
+
+%% can call commands even when they are not defined
+\def\safe#1{%
+ \ifdefined#1%
+ #1%
+ \else%
+ {\color{red}\bf?}%
+ \fi%
+}
+
+
+%% itemize
+\newlength\itemizeskip
+% left margin for items
+\setlength\itemizeskip{20pt}
+\newlength\itemizeseparator
+% space between the item symbol and the text
+\setlength\itemizeseparator{5pt}
+% penalty preceding an itemize
+\def\itemizepenalty{0}
+% counter counting the itemize level
+\newcounter{itemizecount}
+
+% item symbol
+\def\itemizept#1{
+ \ifnum#1=1
+ \textbullet
+ \else
+ $\scriptstyle\blacktriangleright$
+ \fi
+}
+
+\newlength\current@itemizeskip
+\setlength\current@itemizeskip{0pt}
+\def\itemize{
+ \par\penalty\itemizepenalty\medskip\penalty\itemizepenalty
+ \addtocounter{itemizecount}{1}
+ \addtolength\current@itemizeskip{\itemizeskip}
+ \leftskip\current@itemizeskip
+}
+\def\enditemize{
+ \addtocounter{itemizecount}{-1}
+ \addtolength\current@itemizeskip{-\itemizeskip}
+ \par\leftskip\current@itemizeskip
+ \medskip
+}
+\newlength\itempt@total
+\def\item{
+ \settowidth\itempt@total{\itemizept\theitemizecount}
+ \addtolength\itempt@total{\itemizeseparator}
+ \par
+ \medskip
+ \hskip-\itempt@total\itemizept\theitemizecount\hskip\itemizeseparator
+}
+
+%% enumerate
+\newcounter{enumerate@count}
+\def\enumerate{
+ \setcounter{enumerate@count}0
+ \let\olditem\item
+ \let\olditemizept\itemizept
+ \def\item{
+ % counter
+ \stepcounter{enumerate@count}
+ % set header
+ \def\itemizept{\theenumerate@count.}
+ % hyperref anchor
+ \hrefanchor
+ % define tag (for \label)
+ \xdef\tag{\theenumerate@count}
+ \olditem
+ }
+ \itemize
+}
+\def\endenumerate{
+ \enditemize
+ \let\item\olditem
+ \let\itemizept\olditemizept
+}
+
+
+%% end
+\ian@defaultoptions
+
+\endinput