1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
\documentclass{ian-presentation}
\usepackage[hidelinks]{hyperref}
\usepackage{graphicx}
\usepackage{array}
\usepackage{xcolor}
\definecolor{ipurple}{HTML}{4B0082}
\definecolor{iyellow}{HTML}{DAA520}
\definecolor{igreen}{HTML}{32CD32}
\definecolor{iblue}{HTML}{4169E1}
\definecolor{ired}{HTML}{DC143C}
\definecolor{highlight}{HTML}{328932}
\definecolor{highlight}{HTML}{981414}
\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf\Large
\hfil An effective equation to study Bose gases\par
\smallskip
\hfil at all densities\par
\vfil
\large
\hfil Ian Jauslin
\normalsize
\vfil
\hfil\rm joint with {\bf Eric A. Carlen}, {\bf Markus Holzmann}, {\bf Elliott H. Lieb}\par
\vfil
arXiv:{\tt\ \parbox[b]{3cm}{
\href{https://arxiv.org/abs/1912.04987}{1912.04987}\par
\href{https://arxiv.org/abs/2010.13882}{2010.13882}\par
\href{https://arxiv.org/abs/2011.10869}{2011.10869}
}}
\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
\eject
\setcounter{page}1
\pagestyle{plain}
\title{Bose-Einstein condensation}
\begin{itemize}
\item System of many Bosons, e.g. {\color{highlight}Helium} atoms, {\color{highlight}Rubidium} atoms, etc...
\item {\color{highlight}Bose-Einstein condensate}: most particles are in the same quantum state.
\item Related to the phenomena of {\color{highlight}superfluidity} (flow with zero viscocity) and {\color{highlight}superconductivity} (currents with zero resistance).
\item Predicted theoretically in {\color{highlight}1924-1925}, experimentally observed in {\color{highlight}1995}.
\item Mathematical understanding: still {\color{highlight}no proof} of the existence of a condensate (at finite density, in the presence of interactions and in the continuum).
\end{itemize}
\vfill
\eject
\title{Repulsive Bose gas}
\begin{itemize}
\item Potential: {\color{highlight}$v(r)\geqslant 0$} and {\color{highlight}$v\in L_1(\mathbb R^3)$}, Hamiltonian:
$$
H_N:=
-\frac12\sum_{i=1}^N\Delta_i
+\sum_{1\leqslant i<j\leqslant N}v(|x_i-x_j|)
$$
\vskip-5pt
\item Ground state: $\psi_0$, energy $E_0$.
\item Observables in the {\color{highlight}thermodynamic limit}: ground state energy per particle and condensate fraction: $P_i$: projection onto condensate state
$$
e_0:=\lim_{\displaystyle\mathop{\scriptstyle V,N\to\infty}_{{\color{highlight}\frac NV=\rho}}}\frac{E_0}N
,\quad
\eta_0:=\lim_{\displaystyle\mathop{\scriptstyle V,N\to\infty}_{{\color{highlight}\frac NV=\rho}}}\frac1N\sum_{i=1}^N\left<\psi_0\right|P_i\left|\psi_0\right>
.
$$
\end{itemize}
\vfill
\eject
\title{Low density}
\begin{itemize}
\item Bogolyubov theory: {\color{highlight}approximation scheme} that reduces the problem to an effective {\color{highlight}1-particle problem}.
\item Predictions \href{https://doi.org/10.1103/PhysRev.106.1135}{[Lee, Huang, Yang, 1957]}:
\begin{itemize}
\item Energy:
$$
{\color{highlight}e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)}
$$
\vskip-10pt
\item Condensate fraction:
$$
{\color{highlight}1-\eta_0\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi}}
$$
\end{itemize}
\end{itemize}
\vfill
\eject
\title{Low density}
\begin{itemize}
\item Energy asymptotics: {\color{highlight} proved}:
\href{https://doi.org/10.1103/PhysRevLett.80.2504}{[Lieb, Yngvason, 1998]},
\href{https://doi.org/10.1007/s10955-009-9792-3}{[Yau, Yin, 2009]},
\href{https://doi.org/10.4007/annals.2020.192.3.5}{[Fournais, Solovej, 2020]}.
\item Condensate fraction: {\color{highlight}still open} in the theormodynamic limit, but there are proofs of condensation in the Gross-Pitaevskii regime (ultra-dilute):
\href{https://doi.org/10.1103/PhysRevLett.88.170409}{[Lieb, Seiringer, 2002]},
\href{https://doi.org/10.1007/s00220-017-3016-5}{[Boccato, Brennecke, Cenatiempo, Schlein, 2018]}.
\end{itemize}
\vfill
\eject
\title{High density}
\begin{itemize}
\item [Bogolyubov, 1947]: if $\hat v\geqslant 0$.
$$
{\color{highlight}e_0\sim\frac\rho2\int v}
$$
{\color{highlight}Hartree} (mean field) energy.
\item {\color{highlight}Proved} in \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}.
\item Condensate fraction
$$
\eta\to1
$$
{\color{highlight}open}.
\end{itemize}
\vfill
\eject
\title{Energy as a function of density}
For $v(x)=e^{-|x|}$:
\hfil\includegraphics[height=5.5cm]{erho_lowhigh.pdf}
\vfill
\eject
\addtocounter{page}{-1}
\title{Energy as a function of density}
For $v(x)=e^{-|x|}$:
\hfil\includegraphics[height=5.5cm]{erho_effective.pdf}
\vfill
\eject
\title{Derivation of the equation}
\begin{itemize}
\item \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}.
\item Integrate $H_N\psi_0=E_0\psi_0$:
$$
\int dx_1\cdots dx_N\
\left(
-\frac12\sum_{i=1}^N\Delta_i\psi_0
+\sum_{1\leqslant i<j\leqslant N} v(x_i-x_j)\psi_0
\right)
=E_0\int dx_1\cdots dx_N\ \psi_0
$$
\item Therefore,
$$
\frac{N(N-1)}2\int dx_1dx_2\ v(x_1-x_2)\frac{\int dx_3\cdots dx_N\ \psi_0}{\int dx_1\cdots dx_N\ \psi_0}
=E_0
$$
\end{itemize}
\vfill
\eject
\title{Derivation of the equation}
\begin{itemize}
\item Thus,
$$
\frac{E_0}N=\frac{N-1}{2V}\int dx\ v(x)g_2(0,x)
$$
\item {\color{highlight}$\psi_0\geqslant 0$}, so it can be thought of as a probability distribution.
\item $g_n$: {\color{highlight}correlation functions} of $V^{-N}\psi_0$
$$
g_n(x_1,\cdots,x_n):=\frac{V^n\int dx_{n+1}\cdots dx_N\ \psi_0(x_1,\cdots,x_N)}{\int dx_1\cdots dx_N\ \psi_0(x_1,\cdots,x_N)}
$$
\end{itemize}
\vfill
\eject
\title{Hierarchy}
\vskip-10pt
\begin{itemize}
\item Equation for $g_2$: integrate $H_N\psi_0=E_0\psi_0$ with respect to $x_3,\cdots,x_N$:
$$
\begin{array}{>\displaystyle l}
-\frac12(\Delta_x+\Delta_y) g_2(x,y)
+\frac{N-2}V\int dz\ (v(x-z)+v(y-z))g_3(x,y,z)
\\[0.5cm]\hfill
+v(x-y)g_2(x,y)
+\frac{(N-2)(N-3)}{2V^2}\int dzdt\ v(z-t)g_4(x,y,z,t)
=E_0g_2(x,y)
\end{array}
$$
\item Factorization {\color{highlight}assumption}:
$$
g_3(x_1,x_2,x_3)=g_2(x_1,x_2)g_2(x_1,x_3)g_2(x_2,x_3)
$$
$$
g_4(x_1,x_2,x_3,x_4)=\prod_{i<j}(g_2(x_i,x_j)+O(V^{-1}))
$$
\end{itemize}
\vfill
\eject
\title{{\color{ipurple}Big equation}}
\begin{itemize}
\item In the thermodynamic limit, if ${\color{highlight}u(x):=1-g_2(0,x)}$,
$$
-\Delta u(x)
=
(1-u(x))\left(v(x)-2\rho K(x)+\rho^2 L(x)\right)
$$
$$
K:=
u\ast S
,\quad
S(y):=(1-u(y))v(y)
$$
$$
L:=
u\ast u\ast S
-2u\ast(u(u\ast S))
+\frac12
\int dydz\ u(y)u(z-x)u(z)u(y-x)S(z-y)
.
$$
\item {\color{ipurple}``Big'' equation}:
$$
L\approx
u\ast u\ast S
-2u\ast (u(u\ast S))
$$
\end{itemize}
\vfill
\eject
\title{{\color{iblue}Simple equation}}
\vskip-10pt
\begin{itemize}
\item Further approximate $S(x)\approx\frac{2e}\rho\delta(x)$ and $u\ll 1$.
\item Simple equation
$$
{\color{iblue}-\Delta u(x)=(1-u(x))v(x)- 4eu(x)+2e\rho\ u\ast u(x)}
$$
$$
{\color{iblue}e=\frac\rho2\int dx\ (1-u(x))v(x)}
$$
\item {\bf Theorem 1}:
If $v(x)\geqslant 0$ and $v\in L_1\cap L_2(\mathbb R^3)$, then the {\color{iblue}simple equation} has an {\color{highlight}integrable solution} (proved constructively), with $0\leqslant u\leqslant 1$.
\end{itemize}
\vfill
\eject
\title{Energy for the {\color{iblue}simple equation}}
\vskip-10pt
\begin{itemize}
\item {\bf Theorem 2}:
$$
\frac{e}{\rho}\mathop{\longrightarrow}_{\rho\to\infty}\frac12\int dx\ v(x)
$$
(note that there is no condition that $\hat v\geqslant 0$).
This coincides with the {\color{highlight}Hartree energy}.
\item {\bf Theorem 3}:
$$
e=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)
$$
This coincides with the {\color{highlight}Lee-Huang-Yang prediction}.
\end{itemize}
\vfill
\eject
\title{Energy}
$v(x)=e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo}
\hfil\includegraphics[height=5.5cm]{erho_fulleq.pdf}
\vfill
\eject
\title{Energy}
$v(x)=e^{-|x|}$, Blue: {\color{iblue}simple equation}; red: {\color{ired}Jastrow}; purple: {\color{ipurple}big equation}
\hfil\includegraphics[height=5.5cm]{cmp_energy1.pdf}
\vfill
\eject
\title{Condensate fraction}
\begin{itemize}
\item Add a parameter $\mu$ to the Hamiltonian:
$$
H_N(\mu):=
-\frac12\sum_{i=1}^N\Delta_i
+\sum_{1\leqslant i<j\leqslant N}v(x_i-x_j)
{\color{highlight}-\mu\sum_{i=1}^NP_i}
$$
\item Projection onto condensate wavefunction: $P_i$.
\item Condensate fraction:
$$
{\color{highlight}\eta_0}:=\frac1N\left<\psi_0\right|\sum_{i=1}^NP_i\left|\psi_0\right>
=-\frac1N\partial_\mu \left<\psi_0\right|H_N(\mu)\left|\psi_0\right>|_{\mu_0}
\equiv
{\color{highlight}-\partial_\mu e_0(\mu)|_{\mu=0}}
$$
\end{itemize}
\vfill
\eject
\title{Condensate fraction}
\begin{itemize}
\item {\bf Theorem 4}:
For the {\color{iblue}simple equation}, as $\rho\to0$
$$
1-\eta\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi}
$$
which coincides with {\color{highlight}Bogolyubov's prediction}.
\end{itemize}
\vfill
\eject
\title{Condensate fraction}
$v(x)=e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo}
\hfil\includegraphics[height=5.5cm]{condensate.pdf}
\vfill
\eject
\title{Two point correlation function}
$v(x)=16e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo}
\hfil\includegraphics[height=5.5cm]{correlation.pdf}
\vfill
\eject
\title{Summary and outlook}
\begin{itemize}
\item Two {\color{highlight}effective equations}: the {\color{ipurple}big equation} and the {\color{iblue}simple equation}, which are {\color{highlight}non-linear 1-particle equations}.
\item Reproduce the known results for both {\color{highlight}small and large densities}.
\item Their derivation is {\color{highlight}different from Bogolyubov theory}, so they may give new insights onto studying the Bose gas in these asymptotic regimes.
\item The {\color{ipurple}big equation} is {\color{highlight}quantitatively accurate} at intermediate densities.
\item This opens up the possibility of studying the physics of the {\color{highlight}Bose gas at intermediate densities}.
\end{itemize}
\vfill
\eject
\title{Open problems}
\vfill
\begin{itemize}
\item {\color{highlight}Uniqueness} of the solution of the {\color{iblue}simple equation} (done for small and large $\rho$).
\vfill
\item LHY as an {\color{highlight}upper bound} at low density using the {\color{iblue}simple equation} to construct an Ansatz.
\vfill
\item {\color{highlight}Existence} (and uniqueness) of the solution of the {\color{ipurple}big equation}.
\end{itemize}
\vfill
\eject
\title{The uniqueness problem}
$$
-\Delta u(x)=(1-u(x))v(x)- 4eu(x)+2e\rho\ u\ast u(x)
,\quad
e=\frac\rho2\int dx\ (1-u(x))v(x)
$$
\begin{itemize}
\item Change the point of view: {\color{highlight}fix $e>0$}, and compute $\rho$ and $u$.
\item {\color{highlight}Iteration}: $u_0=0$,
$$
(-\Delta+4e+v)u_n=v+2e\rho_{n-1}u_{n-1}\ast u_{n-1}
,\quad
\rho_n:=\frac{2e}{\int dx\ (1-u_n(x))v(x)}
.
$$
\end{itemize}
\vfill
\eject
\title{The uniqueness problem}
\begin{itemize}
\item {\bf Lemma}: $u_n(x)$ is an {\color{highlight}increasing} sequence, and is {\color{highlight}bounded} $u_n(x)\leqslant 1$.
It converges to a function $u$, which is the {\color{highlight}unique} integrable solution of the equation {\color{highlight}with $e$ fixed}.
\item {\bf Lemma}: $e\mapsto\rho(e)$ is {\color{highlight}continuous}, and $\rho(0)=0$ and $\rho(\infty)=\infty$, which allows us to compute solutions for the problem at fixed $\rho$.
\item We thus have a {\color{highlight}restricted} notion of uniqueness.
The full uniqueness would follow from a proof that $e\mapsto\rho(r)$ is {\color{highlight}monotone increasing} (which must be true for the physics to make sense).
\end{itemize}
\vfill
\eject
\title{Upper bound at low density}
\begin{itemize}
\item \href{https://doi.org/10.1007/s10955-009-9792-3}{[Yau, Yin, 2009]}: proof for {\color{highlight}weak, smooth}, rapidly decaying potentials.
\item \href{https://arxiv.org/abs/2101.06222}{[Basti, Cenatiempo, Schlein, 2021]}: extended for {\color{highlight}$L_3$} (and compactly supported) potentials (excludes hard-core interactions).
\item {\color{iblue}Simple Equation}: our analysis holds for the hard-core, so if one could find a good {\color{highlight}Ansatz} from it, one might get an upper bound for the energy in this case.
\item Idea for Ansatz? (Jastrow, Dyson-Jastrow?).
\end{itemize}
\vfill
\eject
\title{Upper bound at low density: Jastrow function}
\begin{itemize}
\item Idea:
$$
\psi=\prod_{i<j}e^{-u(x_i-x_j)}
$$
\item Why this: $\rho\ll1$, and {\color{highlight}if $\rho\|u\|_1\ll1$},
$$
g_2\sim1-u
.
$$
\item Again, {\color{highlight}if $\rho\|u\|_1\ll1$}, we would be able to compute the energy of $\psi$ using a cluster expansion!
\item However, {\color{highlight}$\|u\|_1=\frac1\rho$}!
\end{itemize}
\vfill
\eject
\title{Existence for the {\color{ipurple}Big Equation}}
\begin{itemize}
\item Numerical method: {\color{highlight}Newton algorithm}.
\item For the existence of a solution, it would suffice to prove that the Newton algorithm has a {\color{highlight}Basin of attraction}. (Kantorovich-like theorem?)
\item Such a result, applied to the {\color{iblue}Simple Equation}, would imply the {\color{highlight}uniqueness} of a solution (provided we have convergence in an appropriate norm).
\end{itemize}
\end{document}
|