Ian Jauslin
summaryrefslogtreecommitdiff
blob: ff6d0b7580381a2c8c2a340ed9a3989ed7bea0d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
\documentclass{ian-presentation}

\usepackage[hidelinks]{hyperref}
\usepackage{graphicx}
\usepackage{array}
\usepackage{xcolor}


\definecolor{ipurple}{HTML}{4B0082}
\definecolor{iyellow}{HTML}{DAA520}
\definecolor{igreen}{HTML}{32CD32}
\definecolor{iblue}{HTML}{4169E1}
\definecolor{ired}{HTML}{DC143C}

\definecolor{highlight}{HTML}{328932}
\definecolor{highlight}{HTML}{981414}

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf\Large
\hfil Many interacting quantum particles:\par
\medskip
\hfil\large open problems, and a new point of view on an old problem
\vfil
\large
\hfil Ian Jauslin
\normalsize
\vfil
\rm
\hfil collaborators: {\bf E.A.\-~Carlen, E.H.\-~Lieb, M.\-~Holzmann, M.P.\-~Loss}\par
\vfil
arXiv:{\tt\ \parbox[b]{3cm}{
  \href{https://arxiv.org/abs/1912.04987}{1912.04987}\par
  \href{https://arxiv.org/abs/2010.13882}{2010.13882}\par
  \href{https://arxiv.org/abs/2011.10869}{2011.10869}
}}
\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
\eject

\setcounter{page}1
\pagestyle{plain}

\title{Fermions/Bosons}
\bigskip
\hfil\includegraphics[height=5.5cm]{bosons-weinersmith.png}

\hfil{\tiny Zach Weinersmith, \href{https://creativecommons.org/licenses/by-nc/3.0/legalcode}{CC-BY-NC 3.0}}
\vfill
\eject

\title{Bose-Einstein condensation}
\begin{itemize}
\item System of Bosons, e.g. {\color{highlight}Helium} atoms, {\color{highlight}Rubidium} atoms, etc...
\item At low temperatures, {\color{highlight}superfluidity} (flow with zero viscocity) and {\color{highlight}superconductivity} (currents with zero resistance).
\item {\color{highlight}Bose-Einstein condensate}: most particles are in the same quantum state.
\item Predicted theoretically in {\color{highlight}1924-1925}, experimentally observed in {\color{highlight}1995}.
\item Mathematical understanding: still {\color{highlight}no proof} of the existence of a condensate (at finite density, in the presence of interactions and in the continuum).
\end{itemize}
\vfill
\eject

\title{Repulsive Bose gas}
\begin{itemize}
  \item {\color{highlight}$N$-particle} quantum state in a volume $V$:
  $$
    \psi(x_1,\cdots,x_N)\in L^2_{\mathrm{symmetric}}((V\mathbb T^3)^N)
  $$

  \item $|\psi|^2$: probability distribution on the positions of the $N$ particles.

  \item Hamiltonian operator acting on $\psi$:
  $$
    H_N\psi:=
    -\frac12\sum_{i=1}^N\Delta_i\psi
    +\sum_{1\leqslant i<j\leqslant N}{\color{highlight}v(|x_i-x_j|)}\psi
  $$
  {\color{highlight}$v(r)\geqslant 0$}.
\vfill
\eject

\title{Energy and condensate fraction}
\vskip-10pt
  \item {\color{highlight}Zero-temperature:} Ground state: $\psi_0$, energy $E_0=\inf\mathrm{spec}H_N$:
  $$
    H_N\psi_0={\color{highlight}E_0}\psi_0
  $$
\vskip-10pt
  \item In the {\color{highlight}thermodynamic limit}:
  $$
    e_0:=\lim_{\displaystyle\mathop{\scriptstyle V,N\to\infty}_{{\color{highlight}\frac NV=\rho}}}\frac{E_0}N
    .
  $$
\vskip-5pt
  \item Condensate fraction: proportion of particles in the Bose-Einstein condensate: in the {\color{highlight}thermodynamic limit}: ($P_i$: projection onto condensate wavefunction)
  $$
    \eta_0:=\lim_{\displaystyle\mathop{\scriptstyle V,N\to\infty}_{{\color{highlight}\frac NV=\rho}}}\frac1N\left<\psi_0\right|\sum_{i=1}^NP_i\left|\psi_0\right>
    .
  $$
\end{itemize}
\vfill
\eject

\title{Ground state energy}
\begin{itemize}
  \item At low density: {\color{highlight}Bogolyubov theory}: [Bogolyubov, 1947], \href{https://doi.org/10.1103/PhysRev.106.1135}{[Lee, Huang, Yang, 1957]}:
  $$
    e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)
  $$
  \item {\color{highlight} Proved}:
  \href{https://doi.org/10.1103/PhysRevLett.80.2504}{[Lieb, Yngvason, 1998]},
  \href{https://doi.org/10.1007/s10955-009-9792-3}{[Yau, Yin, 2009]},
  (\href{https://arxiv.org/abs/2101.06222}{[Basti, Cenatiempo, Schlein, 2021]}),
  \href{https://doi.org/10.4007/annals.2020.192.3.5}{[Fournais, Solovej, 2020]}.

  \item At high density: {\color{highlight}Hartree theory}: ({\color{highlight}Proved} in \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}).
  $$
    {\color{highlight}e_0\sim\frac\rho2\int v}
    .
  $$
\end{itemize}
\vfill
\eject

\title{Condensate fraction}
\begin{itemize}
  \item At low density: {\color{highlight}Bogolyubov theory}: [Bogolyubov, 1947], \href{https://doi.org/10.1103/PhysRev.106.1135}{[Lee, Huang, Yang, 1957]}:
  $$
    1-\eta_0\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi}
  $$

  \item {\color{highlight}Still open} in the thermodynamic limit. (No proof of Bose-Einstein condensation, in the continuum, at finite density.)

  \item At high density: {\color{highlight}Hartree theory}: ({\color{highlight}open})
  $$
    \eta_0\to1
  $$
\end{itemize}
\vfill
\eject

\title{Effective equations}
\begin{itemize}
  \item {\color{highlight}Boltzmann equation}: $N$ classical hard particles with an infinitely small radius (dilute limit)
  [Lanford, 1976].
  \item {\color{highlight}Thomas-Fermi theory}: $Z$ electrons orbiting a nucleus in the $Z\to\infty$ limit
  \href{https://doi.org/10.1103/PhysRevLett.31.681}{[Lieb, Simon, 1973]}.
  \item{\color{highlight}Hartree-Fock equation}: dynamics of many Fermions in the weakly-interacting limit
  \href{https://doi.org/10.1142/9789814618144_0011}{[Benedikter, Porta, Schlein, 2015]}.
  \item{\color{highlight}Hartree-Fock-Bogolyubov equation}: dynamics of many Bosons in the weakly-interacting limit
  \href{https://arxiv.org/abs/1602.05171}{[Bach, Breteaux, Chen, Fr\"ohlich, Sigal, 2016]}.
\end{itemize}
\vfill
\eject

\title{{\color{iblue}Simple equation}}
\begin{itemize}
  \item {\color{iblue}Simple equation}
  $$
    -\Delta u(x)=(1-u(x))v(x)- 4eu(x)+2e\rho\ u\ast u(x)
  $$
  $$
    e=\frac\rho2\int dx\ (1-u(x))v(x)
  $$
  \item $\rho>0$, $v(x)\geqslant 0$, $v\in L_1(\mathbb R^3)$.
  \item {\color{highlight}Non-linear} and {\color{highlight}non-local} partial differential equation.
  \item {\color{highlight}Effective equation} for the ground state of a Bose gas.
  \item Main idea: think of {\color{highlight}$\psi$ as a probability distribution} instead of $|\psi|^2$.
\end{itemize}
\vfill
\eject

\title{Energy as a function of density for the {\color{iblue}Simple equation}}
For $v(x)=e^{-|x|}$:

\hfil\includegraphics[height=5.5cm]{erho_lowhigh.pdf}
\vfill
\eject

\addtocounter{page}{-1}
\title{Energy as a function of density for the {\color{iblue}Simple equation}}
For $v(x)=e^{-|x|}$:

\hfil\includegraphics[height=5.5cm]{erho_effective.pdf}
\vfill
\eject

\title{Energy}
$v(x)=e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo}

\hfil\includegraphics[height=5.5cm]{erho_fulleq.pdf}
\vfill
\eject

\title{{\color{ipurple}Big equation}}
\begin{itemize}
\item $x\in\mathbb R^3$,
  $$
    -\Delta u(x)
    =
    (1-u(x))\left(v(x)-2\rho K(x)+\rho^2 L(x)\right)
  $$
  $$
    K:=
    u\ast S
    ,\quad
    S(y):=(1-u(y))v(y)
  $$
  $$
    L:=
    u\ast u\ast S
    -2u\ast(u(u\ast S))
    .
  $$
\end{itemize}
\vfill
\eject

\title{Condensate fraction}
$v(x)=e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo}

\hfil\includegraphics[height=5.5cm]{condensate.pdf}
\vfill
\eject

\title{Conclusions}
\begin{itemize}
  \item Two {\color{highlight}effective equations}: the {\color{ipurple}big equation} and the {\color{iblue}simple equation}, which are {\color{highlight}non-linear 1-particle equations}.
  \item Reproduce the known results for both {\color{highlight}small and large densities}.
  \item Their derivation is {\color{highlight}different from Bogolyubov theory}, so they may give new insights onto studying the Bose gas in these asymptotic regimes.
  \item The {\color{ipurple}big equation} is {\color{highlight}quantitatively accurate} at intermediate densities.
  \item This opens up the possibility of studying the physics of the {\color{highlight}Bose gas at intermediate densities}.
\end{itemize}

\end{document}