Ian Jauslin
summaryrefslogtreecommitdiff
blob: 1899f15abb64a7a453a535fe19e91681de1a95f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
\documentclass{ian-presentation}

\usepackage[hidelinks]{hyperref}
\usepackage{graphicx}
\usepackage{array}

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf\Large
\hfil A simplified approach to interacting Bose gases\par
\vfil
\large
\hfil Ian Jauslin
\normalsize
\vfil
\hfil\rm joint with {\bf Eric Carlen}, {\bf Elliott H. Lieb}\par
\vfil
arXiv:{\tt \href{https://arxiv.org/abs/1912.04987}{1912.04987}}
\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
\eject

\setcounter{page}1
\pagestyle{plain}
\title{Lieb's simple equation}
\vskip-10pt
\begin{itemize}
  \item \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}: $x\in\mathbb R^3$
  $$
    (-\Delta+v(x)+4e)u(x)=v(x)+2e\rho\ u\ast u(x)
  $$
  $$
    e=\frac\rho2\int dx\ (1-u(x))v(x)
  $$
  \item with
  $$
    \rho>0
    ,\quad
    v(x)\geqslant 0
    ,\quad
    v\in L_1\cap L_2(\mathbb R^3)
  $$
  \item and
  $$
    u\in L_1(\mathbb R^3)
    ,\quad
    u\ast u(x):=\int dy\ u(x-y)u(y)
  $$
\end{itemize}
\vfill
\eject


\title{Interacting Bose gas}
\vskip-10pt
\begin{itemize}
  \item State: symmetric wave functions in a finite box of volume $V$ with periodic boundary conditions:
  $$
    \psi(x_1,\cdots,x_N)
    ,\quad
    x_i\in \Lambda_d:=V^{\frac1d}\mathbb T^d
  $$
  \item Probability distribution: $|\psi(x_1,\cdots,x_N)|^2$
  \item $N$-particle Hamiltonian:
  $$
    H_N:=
    -\frac12\sum_{i=1}^N\Delta_i
    +\sum_{1\leqslant i<j\leqslant N}v(x_i-x_j)
  $$
  with $v(x-y)\geqslant 0$ and $v\in L_1\cap L_{\frac d2+\epsilon}(\mathbb R^d)$.
\end{itemize}
\vfill
\eject

\title{Interacting Bose gas}
\begin{itemize}
  \item Ground state:
  $$
    H_N\psi_0=E_0\psi_0
    ,\quad
    E_0=\min\mathrm{spec}(H_N)
  $$
  \item Compute the ground state-energy per particle in the thermodynamic limit:
  $$
    e_0:=\lim_{\displaystyle\mathop{\scriptstyle V,N\to\infty}_{\frac NV=\rho}}\frac{E_0}N
  $$
\end{itemize}
\vfill
\eject

\title{Energy}
\begin{itemize}
  \item Integrate $H_N\psi_0=E_0\psi_0$:
  $$
    \frac{E_0}N=\frac{N-1}{2V}\int dx\ v(x)g_2(0,x)
  $$
  \item $g_n$: marginal of $\psi_0$
  $$
    g_n(x_1,\cdots,x_n):=\frac{V^n\int dx_{n+1}\cdots dx_N\ \psi_0(x_1,\cdots,x_N)}{\int dx_1\cdots dx_N\ \psi_0(x_1,\cdots,x_N)}
  $$
  \item $\psi_0\geqslant 0$, so it can be thought of as a probability distribution
\end{itemize}
\vfill
\eject

\title{Hierarchy}
\vskip-10pt
\begin{itemize}
  \item Equation for $g_2$: integrate $H_N\psi_0=E_0\psi_0$ with respect to $x_3,\cdots,x_N$:
  $$
    \begin{array}{>\displaystyle l}
      -\frac12(\Delta_x+\Delta_y) g_2(x,y)
      +\frac{N-2}V\int dz\ (v(x-z)+v(y-z))g_3(x,y,z)
      \\[0.5cm]\hfill
      +v(x-y)g_2(x,y)
      +\frac{(N-2)(N-3)}{2V^2}\int dzdt\ v(z-t)g_4(x,y,z,t)
      =E_0g_2(x,y)
    \end{array}
  $$
  \item Factorization assumption:
  $$
    g_3(x_1,x_2,x_3)=g_2(x_1,x_2)g_2(x_1,x_3)g_2(x_2,x_3)
  $$
  $$
    g_4(x_1,x_2,x_3,x_4)=\prod_{i<j}(g_2(x_i,x_j)+O(V^{-1}))
  $$
\end{itemize}
\vfill
\eject

\title{Lieb's simple equation}
\begin{itemize}
  \item In the thermodynamic limit, after making a few additional assumptions, \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}:
  $$
    (-\Delta+v(x)+4e)u(x)=v(x)+2e\rho\ u\ast u(x)
  $$
  $$
    e=\frac\rho2\int dx\ (1-u(x))v(x)
  $$
  \item with $\rho:=\frac NV$
  $$
    g_2(x,y)=1-u(x-y)
  $$
\end{itemize}
\vfill
\eject

\title{One dimension}
\hfil\includegraphics[height=6cm,angle=0.4]{1d.png}
\vfill
\eject

\title{Numerical solution for $v(x)=e^{-|x|}$ in 3 dimensions}
\hfil\includegraphics[height=6cm]{erho_bare.pdf}
\vfill
\eject

\title{Numerical solution for $v(x)=e^{-|x|}$ in 3 dimensions}
\hfil\includegraphics[height=6cm]{erho.pdf}
\vfill
\eject

\title{Asymptotics for the Bose gas}
\vskip-10pt
\begin{itemize}
  \item {\bf Theorem} \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}: if $\hat v(k):=\int dx\ e^{ikx}v(x)\geqslant 0$, then
  $$
    \frac{e_0}{\rho}\mathop{\longrightarrow}_{\rho\to\infty}\frac12\int dx\ v(x)
  $$
  \item {\bf Theorem} \href{https://doi.org/10.1103/PhysRevLett.80.2504}{[Lieb, Yngvason, 1998]}: in 3 dimensions ($a$: scattering length)
  $$
    \frac{e_0}{\rho}\mathop{\longrightarrow}_{\rho\to0}2\pi a
  $$
  \href{https://doi.org/10.1103/PhysRev.106.1135}{[Lee, Huang, Yang, 1957]}, \href{https://doi.org/10.1007/s10955-009-9792-3}{[Yau, Yin, 2009]}, \href{https://arxiv.org/abs/1904.06164}{[Fournais, Solovej, 2019]}:
  $$
    e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)
  $$
\end{itemize}
\vfill
\eject

\title{Comparison with Bose gas (Monte Carlo)}
\vskip-10pt
\hfil\includegraphics[width=8cm]{erho_holzmann.pdf}

\hfil{\footnotesize Monte Carlo computation courtesy of M. Holzmann}
\vfill
\eject

\title{Main Theorem}
\vskip-5pt
\begin{itemize}
  \item If $v(x)\geqslant 0$ and $v\in L_1\cap L_{\frac d2+\epsilon}(\mathbb R^d)$, then Lieb's simple equation
  $$
    (-\Delta+4e+v)u=v+2e\rho u\ast u
    ,\quad
    e=\frac\rho2\int dx\ (1-u(x))v(x)
  $$
  has an integrable solution (proved constructively), with $0\leqslant u\leqslant 1$.

  \item In 3 dimensions,
  $$
    e=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)
    ,\quad
    \frac{e}\rho\mathop{\longrightarrow}_{\rho\to\infty}\frac12\int dx\ v(x)
  $$

  \item If $v(x)\equiv v(|x|)$ is radially symmetric and decays exponentially,
  $$
    u(|x|)\mathop\sim_{|x|\to\infty}\frac\alpha{|x|^4}
  $$
\end{itemize}
\vfill
\eject

\title{Existence of a solution (sketch)}
\begin{itemize}
  \item Change the point of view: fix $e>0$, and compute $\rho$ and $u$.

  \item Iteration: $u_0=0$,
  $$
    (-\Delta+4e+v)u_n=v+2e\rho_{n-1}u_{n-1}\ast u_{n-1}
    ,\quad
    \rho_n:=\frac{2e}{\int dx\ (1-u_n(x))v(x)}
    .
  $$

  \item Prove by induction that $u_n(x)$ is an increasing sequence, and is bounded $u_n(x)\leqslant 1$. It therefore converges to a function $u$, which is the unique integrable solution of the equation with $e$ fixed.

  \item In addition, we prove that $e\mapsto\rho(e)$ is continuous, and $\rho(0)=0$ and $\rho(\infty)=\infty$, which allows us to  compute solutions for the problem at fixed $\rho$. This does not imply the uniqueness of the solution.
\end{itemize}
\vfill
\eject

\title{Asymptotics (sketch)}
\vskip-10pt
\begin{itemize}
  \item When $\rho$ is small, $e$ is small as well, so the solution $u$ is {\it not too far from} the solution of the scattering equation
  $$
    (-\Delta+v)\varphi=v
    .
  $$

  \item The energy of $\varphi$ is
  $$
    \frac\rho 2\int dx\ (1-\varphi(x))v(x)=2\pi\rho a
  $$
  which yields the first term in the expansion.

  \item The second term comes from approximating
  $$
    (1-u(x))v(x)\approx\frac{2e}\rho\delta(x)
  $$
  and solving the equation in Fourier space.
\end{itemize}
\vfill
\eject

\title{Decay (sketch)}
$$
  (-\Delta+4e+v)u=v+2e\rho u\ast u
  ,\quad
  e=\frac\rho2\int dx\ (1-u(x))v(x)
$$
\begin{itemize}
  \item $u$ and $u\ast u$ have to decay at the same rate. This is a property of algebraically decaying functions.

  \item (Remark: if $f(x)\geqslant f\ast f(x)$ and $\int f=\frac12$, then (morally) $f\sim|x|^{d+1}$.)

  \item (Remark: $u_n(x)$ decays exponentially).

  \item Proof is based on the Fourier transform and complex analysis.

  \item Remark: The truncated two-point correlation function of the Bose gas is also conjectured to decay like $|x|^{-4}$.
\end{itemize}
\vfill
\eject

\title{Conclusion}
\vfill
\begin{itemize}
  \item Simple equation: correct asymptotics for the ground state energy at both high and low densities.

  \item Good approximation for intermediate densities (relative error of 5\%).

  \item Intriguing non-linear PDE.

  \item Proved existence, asymptotics, and decay rate.
\end{itemize}
\vfill
\eject

\title{Open problems and conjectures}
\begin{itemize}
  \item Monotonicity of $e\mapsto\rho(e)$, and concavity of $e\mapsto\frac1{\rho(e)}$ (would imply uniqueness).

  \item Other observables? Condensate fraction? (in progress)

  \item Crystallization?

  \item {\it Lieb's simple equation} is actually a simplified version of a more complicated one: {\it Lieb's full equation}. Can it improve on the simple one? (in progress)
\end{itemize}

\end{document}