Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorIan Jauslin <ian@jauslin.org>2020-12-16 22:41:24 +0100
committerIan Jauslin <ian@jauslin.org>2020-12-16 22:41:24 +0100
commit1038647506b9d897e73bf465a381f03aab6fb19e (patch)
treec61377e7ae51eab164c97b357ab76443c4d16852 /Jauslin_Rutgers_2020.tex
Ad presented at Rutgers University on 2020-12-16HEADv1.0master
Diffstat (limited to 'Jauslin_Rutgers_2020.tex')
-rw-r--r--Jauslin_Rutgers_2020.tex398
1 files changed, 398 insertions, 0 deletions
diff --git a/Jauslin_Rutgers_2020.tex b/Jauslin_Rutgers_2020.tex
new file mode 100644
index 0000000..ba898a6
--- /dev/null
+++ b/Jauslin_Rutgers_2020.tex
@@ -0,0 +1,398 @@
+\documentclass{ian-presentation}
+
+\usepackage[hidelinks]{hyperref}
+\usepackage{graphicx}
+\usepackage{array}
+\usepackage{xcolor}
+
+
+\definecolor{ipurple}{HTML}{4B0082}
+\definecolor{iyellow}{HTML}{DAA520}
+\definecolor{igreen}{HTML}{32CD32}
+\definecolor{iblue}{HTML}{4169E1}
+\definecolor{ired}{HTML}{DC143C}
+
+\definecolor{highlight}{HTML}{328932}
+\definecolor{highlight}{HTML}{981414}
+
+\begin{document}
+\pagestyle{empty}
+\hbox{}\vfil
+\bf\Large
+\hfil Analysis of a non-linear, non-local PDE\par
+\hfil to study Bose gases at all densities
+\vfil
+\large
+\hfil Ian Jauslin
+\normalsize
+\vfil
+\rm
+\hfil collaborators: {\bf E.A.\-~Carlen, E.H.\-~Lieb, M.\-~Holzmann, M.P.\-~Loss}\par
+\vfil
+arXiv:{\tt\ \parbox[b]{3cm}{
+ \href{https://arxiv.org/abs/1912.04987}{1912.04987}\par
+ \href{https://arxiv.org/abs/2010.13882}{2010.13882}\par
+ \href{https://arxiv.org/abs/2011.10869}{2011.10869}
+}}
+\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
+\eject
+
+\setcounter{page}1
+\pagestyle{plain}
+
+\title{{\color{iblue}Simple equation}}
+\begin{itemize}
+ \item {\color{iblue}Simple equation}
+ $$
+ -\Delta u(x)=(1-u(x))v(x)- 4eu(x)+2e\rho\ u\ast u(x)
+ $$
+ $$
+ e=\frac\rho2\int dx\ (1-u(x))v(x)
+ $$
+ \item $\rho>0$, $v(x)\geqslant 0$, $v\in L_1(\mathbb R^3)$.
+ \item {\color{highlight}Non-linear} and {\color{highlight}non-local} partial differential equation.
+ \item {\color{highlight}Effective equation} for the ground state of a Bose gas.
+\end{itemize}
+\vfill
+\eject
+
+\title{Bose-Einstein condensation}
+\begin{itemize}
+\item System of many Bosons, e.g. {\color{highlight}Helium} atoms, {\color{highlight}Rubidium} atoms, etc...
+\item {\color{highlight}Bose-Einstein condensate}: most particles are in the same quantum state.
+\item Related to the phenomena of {\color{highlight}superfluidity} (flow with zero viscocity) and {\color{highlight}superconductivity} (currents with zero resistance).
+\item Predicted theoretically in {\color{highlight}1924-1925}, experimentally observed in {\color{highlight}1995}.
+\item Mathematical understanding: still {\color{highlight}no proof} of the existence of a condensate (at finite density, in the presence of interactions and in the continuum).
+\end{itemize}
+\vfill
+\eject
+
+\title{Repulsive Bose gas}
+\begin{itemize}
+ \item {\color{highlight}$N$-particle} quantum state in a volume $V$:
+ $$
+ \psi_N(x_1,\cdots,x_N)\in L^2_{\mathrm{symmetric}}((V\mathbb T^3)^N)
+ $$
+
+ \item $|\psi|^2$: probability distribution on the positions of the $N$ particles.
+
+ \item Hamiltonian operator acting on $\psi$:
+ $$
+ H_N\psi:=
+ -\frac12\sum_{i=1}^N\Delta_i\psi
+ +\sum_{1\leqslant i<j\leqslant N}{\color{highlight}v(|x_i-x_j|)}\psi
+ $$
+ {\color{highlight}$v(r)\geqslant 0$}, {\color{highlight}$\hat v(k)\geqslant 0$} and {\color{highlight}$v\in L_1(\mathbb R^3)$}.
+\vfill
+\eject
+
+\title{Energy and condensate fraction}
+\vskip-10pt
+ \item Ground state: $\psi_0$, energy $E_0$:
+ $$
+ H_N\psi_0={\color{highlight}E_0}\psi_0
+ $$
+\vskip-10pt
+ \item In the {\color{highlight}thermodynamic limit}:
+ $$
+ e_0:=\lim_{\displaystyle\mathop{\scriptstyle V,N\to\infty}_{{\color{highlight}\frac NV=\rho}}}\frac{E_0}N
+ .
+ $$
+\vskip-5pt
+ \item Condensate fraction: proportion of particles in the Bose-Einstein condensate: in the {\color{highlight}thermodynamic limit}:
+ $$
+ \eta_0:=\lim_{\displaystyle\mathop{\scriptstyle V,N\to\infty}_{{\color{highlight}\frac NV=\rho}}}\frac1N\left<\psi_0\right|\sum_{i=1}^N\int\frac{dx_i}V\left|\psi_0\right>
+ .
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Low density conjectures}
+\begin{itemize}
+ \item Bogolyubov theory: {\color{highlight}approximation scheme} [Bogolyubov, 1947].
+ \item Predictions \href{https://doi.org/10.1103/PhysRev.106.1135}{[Lee, Huang, Yang, 1957]}:
+ \begin{itemize}
+ \item Energy:
+ $$
+ {\color{highlight}e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)}
+ $$
+ \vskip-10pt
+ \item Condensate fraction:
+ $$
+ {\color{highlight}1-\eta_0\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi}}
+ $$
+ \end{itemize}
+\end{itemize}
+\vfill
+\eject
+
+\title{Low density conjectures}
+\begin{itemize}
+ \item Energy asymptotics: {\color{highlight} proved}:
+ \href{https://doi.org/10.1103/PhysRevLett.80.2504}{[Lieb, Yngvason, 1998]},
+ \href{https://doi.org/10.1007/s10955-009-9792-3}{[Yau, Yin, 2009]},
+ \href{https://doi.org/10.4007/annals.2020.192.3.5}{[Fournais, Solovej, 2020]}.
+
+ \item Condensate fraction: {\color{highlight}still open} in the thermodynamic limit. (No proof of Bose-Einstein condensation.)
+
+ \item There are proofs of condensation in the ultra-dilute (Gross-Pitaevskii) regime:
+ \href{https://doi.org/10.1103/PhysRevLett.88.170409}{[Lieb, Seiringer, 2002]},
+ \href{https://doi.org/10.1007/s00220-017-3016-5}{[Boccato, Brennecke, Cenatiempo, Schlein, 2018]}.
+
+ \item There is also a proof of condensation for a {\color{highlight}lattice} Bose gas
+ \href{https://doi.org/10.1007/BF01023854}{[Kennedy, Lieb, Shastry, 1988]}.
+\end{itemize}
+\vfill
+\eject
+
+\title{High density conjectures}
+\begin{itemize}
+ \item [Bogolyubov, 1947]:
+ $$
+ {\color{highlight}e_0\sim\frac\rho2\int v}
+ $$
+ \item {\color{highlight}Proved} in \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}.
+
+ \item Condensate fraction: mean field regime: $\eta_0\to 1$. (No proof of Bose-Einstein condensation at any density.)
+\end{itemize}
+\vfill
+\eject
+
+\title{Energy as a function of density for the {\color{iblue}Simple equation}}
+For $v(x)=e^{-|x|}$:
+
+\hfil\includegraphics[height=5.5cm]{erho_lowhigh.pdf}
+\vfill
+\eject
+
+\addtocounter{page}{-1}
+\title{Energy as a function of density for the {\color{iblue}Simple equation}}
+For $v(x)=e^{-|x|}$:
+
+\hfil\includegraphics[height=5.5cm]{erho_effective.pdf}
+\vfill
+\eject
+
+\title{Effective equations}
+\begin{itemize}
+ \item {\color{highlight}Boltzmann equation}: $N$ classical hard particles with an infinitely small radius (dilute limit)
+ [Lanford, 1976].
+ \item {\color{highlight}Thomas-Fermi theory}: $Z$ electrons orbiting a nucleus in the $Z\to\infty$ limit
+ \href{https://doi.org/10.1103/PhysRevLett.31.681}{[Lieb, Simon, 1973]}.
+ \item{\color{highlight}Hartree-Fock equation}: dynamics of many Fermions in the weakly-interacting limit
+ \href{https://doi.org/10.1142/9789814618144_0011}{[Benedikter, Porta, Schlein, 2015]}.
+ \item{\color{highlight}Hartree-Fock-Bogolyubov equation}: dynamics of many Bosons in the weakly-interacting limit
+ \href{https://arxiv.org/abs/1602.05171}{[Bach, Breteaux, Chen, Fr\"ohlich, Sigal, 2016]}.
+\end{itemize}
+\vfill
+\eject
+
+\title{Derivation of the equation}
+\begin{itemize}
+ \item \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}.
+ \item Integrate $H_N\psi_0=E_0\psi_0$:
+ $$
+ \int dx_1\cdots dx_N\
+ \left(
+ -\frac12\sum_{i=1}^N\Delta_i\psi_0
+ +\sum_{1\leqslant i<j\leqslant N} v(x_i-x_j)\psi_0
+ \right)
+ =E_0\int dx_1\cdots dx_N\ \psi_0
+ $$
+ \item Therefore,
+ $$
+ \frac{N(N-1)}2\int dx_1dx_2\ v(x_1-x_2)\frac{\int dx_3\cdots dx_N\ \psi_0}{\int dx_1\cdots dx_N\ \psi_0}
+ =E_0
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Derivation of the equation}
+\begin{itemize}
+ \item Thus,
+ $$
+ \frac{E_0}N=\frac{N-1}{2V}\int dx\ v(x)g_2(0,x)
+ $$
+ \item {\color{highlight}$\psi_0\geqslant 0$}, so it can be thought of as a probability distribution.
+ \item $g_n$: {\color{highlight}correlation functions} of $\psi_0$
+ $$
+ g_n(x_1,\cdots,x_n):=\frac{V^n\int dx_{n+1}\cdots dx_N\ \psi_0(x_1,\cdots,x_N)}{\int dx_1\cdots dx_N\ \psi_0(x_1,\cdots,x_N)}
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Hierarchy}
+\vskip-10pt
+\begin{itemize}
+ \item Equation for $g_2$: integrate $H_N\psi_0=E_0\psi_0$ with respect to $x_3,\cdots,x_N$:
+ $$
+ \begin{array}{>\displaystyle l}
+ -\frac12(\Delta_x+\Delta_y) g_2(x,y)
+ +\frac{N-2}V\int dz\ (v(x-z)+v(y-z))g_3(x,y,z)
+ \\[0.5cm]\hfill
+ +v(x-y)g_2(x,y)
+ +\frac{(N-2)(N-3)}{2V^2}\int dzdt\ v(z-t)g_4(x,y,z,t)
+ =E_0g_2(x,y)
+ \end{array}
+ $$
+ \item Factorization {\color{highlight}assumption}:
+ $$
+ g_3(x_1,x_2,x_3)=g_2(x_1,x_2)g_2(x_1,x_3)g_2(x_2,x_3)
+ $$
+ $$
+ g_4(x_1,x_2,x_3,x_4)=\prod_{i<j}(g_2(x_i,x_j)+O(V^{-1}))
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{{\color{ipurple}Big equation}}
+\begin{itemize}
+\item In the thermodynamic limit, if ${\color{highlight}u(x):=1-g_2(0,x)}$,
+ $$
+ -\Delta u(x)
+ =
+ (1-u(x))\left(v(x)-2\rho K(x)+\rho^2 L(x)\right)
+ $$
+ $$
+ K:=
+ u\ast S
+ ,\quad
+ S(y):=(1-u(y))v(y)
+ $$
+ $$
+ L:=
+ u\ast u\ast S
+ -2u\ast(u(u\ast S))
+ +\frac12
+ \int dydz\ u(y)u(z-x)u(z)u(y-x)S(z-y)
+ .
+ $$
+
+ \item {\color{ipurple}``Big'' equation}:
+ $$
+ L\approx
+ u\ast u\ast S.
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{{\color{iblue}Simple equation}}
+\vskip-10pt
+\begin{itemize}
+ \item Further approximate $S(x)\approx\frac{2e}\rho\delta(x)$ and $u\ll 1$.
+ \item Simple equation
+ $$
+ {\color{iblue}-\Delta u(x)=(1-u(x))v(x)- 4eu(x)+2e\rho\ u\ast u(x)}
+ $$
+ $$
+ {\color{iblue}e=\frac\rho2\int dx\ (1-u(x))v(x)}
+ $$
+ \item {\bf Theorem 1}:
+ If $v(x)\geqslant 0$ and $v\in L_1\cap L_2(\mathbb R^3)$, then the {\color{iblue}simple equation} has an {\color{highlight}integrable solution} (proved constructively), with $0\leqslant u\leqslant 1$.
+\end{itemize}
+\vfill
+\eject
+
+\title{Energy for the {\color{iblue}simple equation}}
+\vskip-10pt
+\begin{itemize}
+ \item {\bf Theorem 2}:
+ $$
+ \frac{e}{\rho}\mathop{\longrightarrow}_{\rho\to\infty}\frac12\int dx\ v(x)
+ .
+ $$
+ This coincides with the {\color{highlight}Hartree energy}.
+ \item {\bf Theorem 3}:
+ $$
+ e=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)
+ $$
+ This coincides with the {\color{highlight}Lee-Huang-Yang prediction}.
+\end{itemize}
+\vfill
+\eject
+
+\title{Energy}
+$v(x)=e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo}
+
+\hfil\includegraphics[height=5.5cm]{erho_fulleq.pdf}
+\vfill
+\eject
+
+\title{Condensate fraction}
+\begin{itemize}
+ \item Add a parameter $\mu$ to the Hamiltonian:
+ $$
+ H_N(\mu):=
+ -\frac12\sum_{i=1}^N\Delta_i
+ +\sum_{1\leqslant i<j\leqslant N}v(x_i-x_j)
+ {\color{highlight}-\mu\sum_{i=1}^N\int\frac{dx_i}V\ \cdot}
+ $$
+ \item Projection onto condensate wavefunction: $\sum_i\int\frac{dx_i}V$.
+ \item Condensate fraction:
+ $$
+ {\color{highlight}\eta_0}:=\frac1N\left<\psi_0\right|\sum_{i=1}^N\int\frac{dx_i}V\left|\psi_0\right>
+ =-\frac1N\partial_\mu \left<\psi_0\right|H_N(\mu)\left|\psi_0\right>|_{\mu_0}
+ \equiv
+ {\color{highlight}-\partial_\mu e_0(\mu)|_{\mu=0}}
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Condensate fraction}
+\begin{itemize}
+ \item {\bf Theorem 4}:
+ For the {\color{iblue}simple equation}, as $\rho\to0$
+ $$
+ 1-\eta\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi}
+ $$
+ which coincides with {\color{highlight}Bogolyubov's prediction}.
+
+ \item In particular {\color{highlight}there is Bose-Einstein condensation} for the simple equation.
+\end{itemize}
+\vfill
+\eject
+
+\title{Condensate fraction}
+$v(x)=e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo}
+
+\hfil\includegraphics[height=5.5cm]{condensate.pdf}
+\vfill
+\eject
+
+\title{Conclusions and outlook}
+\begin{itemize}
+ \item Two {\color{highlight}effective equations}: the {\color{ipurple}big equation} and the {\color{iblue}simple equation}, which are {\color{highlight}non-linear 1-particle equations}.
+ \item Reproduce the known results for both {\color{highlight}small and large densities}.
+ \item Their derivation is {\color{highlight}different from Bogolyubov theory}, so they may give new insights onto studying the Bose gas in these asymptotic regimes.
+ \item The {\color{ipurple}big equation} is {\color{highlight}quantitatively accurate} at intermediate densities.
+ \item This opens up the possibility of studying the physics of the {\color{highlight}Bose gas at intermediate densities}.
+\end{itemize}
+\vfill
+\eject
+
+\title{Open problems and next steps}
+\vskip-10pt
+\begin{itemize}
+ \item Analysis of the {\color{ipurple}big equation}: everything is still open.
+\vskip-10pt
+ \begin{itemize}
+ \item Main tool: {\color{highlight}Newton algorithm}, which works numerically.
+ \item There is a family of {\color{highlight}intermediate equations} that extrapolate between the {\color{iblue} simple} and {\color{ipurple}big} equations.
+ \end{itemize}
+
+ \item Relate these equations back to the {\color{highlight}many-body Bose gas}.
+ \vskip-10pt
+ \begin{itemize}
+ \item {\color{highlight}Upper bound} for the ground state energy, using a {\color{highlight}Bijl function} as a test function.
+ \item {\color{highlight}Lee-Huang Yang formula} by studying the low-density properties of the {\color{highlight}Bijl function}.
+ \item Extend the proof to the {\color{highlight}condensate fraction}.
+ \end{itemize}
+\end{itemize}
+
+\end{document}