Ian Jauslin
summaryrefslogtreecommitdiff
blob: 974976dca02a2bc04b14031791b1ff4399463a1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
\documentclass{ian-presentation}

\usepackage[hidelinks]{hyperref}
\usepackage{graphicx}
\usepackage{array}

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf\Large
\hfil Exact solution of the time dependent Schrödinger\par
\hfil equation for photoemission from a metal surface
\vfil
\large
\hfil Ian Jauslin
\normalsize
\vfil
\hfil\rm joint with {\bf Ovidiu Costin}, {\bf Rodica Costin}, and {\bf Joel L. Lebowitz}\par
\vfil
\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
\eject

\setcounter{page}1
\pagestyle{plain}

\title{Electron emission}
$$
  V(x)=U\Theta(x)
  ,\quad
  E_{\mathrm F}=k_{\mathrm F}^2<U
$$
\hfil\includegraphics[height=5cm]{potential_square.pdf}
\vfill
\eject

\title{Thermal emission}
$$
  V(x)=U\Theta(x)
  ,\quad
  k^2>U
$$
\hfil\includegraphics[height=5cm]{potential_square_thermal.pdf}
\vfill
\eject

\title{Field emission}
$$
  V(x)=\Theta(x)(U-Ex)
$$
\hfil\includegraphics[height=5cm]{potential.pdf}
\vfill
\eject

\title{Photoemission}
$$
  V_t(x)=\Theta(x)(U-E_tx)
  ,\quad
  E_t=2\epsilon\omega\cos(\omega t)
$$
\hfil\includegraphics[height=5cm]{potential_square_photonic.pdf}
\vfill
\eject

\title{Photoemission}
\begin{itemize}
  \item Photoelectric effect: early observations: \href{https://doi.org/10.1002/andp.18872670827}{[Hertz, 1887]}, \href{https://doi.org/10.1002/andp.18882690206}{[Hallwachs, 1888]}, \href{https://doi.org/10.1002/andp.19003070611}{[Lenard, 1900]}.
  \item When a metal is irradiated with ultra-violet light, electrons are ionized, with kinetic energies at integer multiples of $\hbar\omega$.
  \item \href{https://doi.org/10.1002/andp.19053220607}{[Einstein, 1905]}: interpretation: quanta of light ({\it photons}) of energy $\hbar\omega$ are absorbed by the electrons, whose kinetic energy is raised by $n\hbar\omega$, and can escape the metal.
\end{itemize}
\vfill
\eject

\title{Photoemission}
\vskip-10pt
\begin{itemize}
  \item Time dependent potential:
  $$
    V_t(x)=\Theta(x)(U-2\epsilon\omega\cos(\omega t)x)
  $$
\vskip-10pt
  \item Schr\"odinger equation
  $$
    i\partial_t\psi(x,t)=-\Delta\psi(x,t)+V_t(x)\psi(x,t)
  $$
\vskip-10pt
  \item Magnetic gauge:
  $$
    \Psi(x,t)
    :=\psi(x,t)e^{-ix\Theta(x)A(t)}
    ,\quad
    A(t):=\int_0^t ds\ 2\epsilon\omega\cos(\omega s)
  =
  2\epsilon\sin(\omega t)
  $$
  satisfies
  $$
    i\partial_t\Psi(x,t)=\left((-i\nabla+\Theta(x)A(t))^2+\Theta(x)U\right)\Psi(x,t)
  $$
\end{itemize}
\vfill
\eject

\title{Periodic solution}
\vskip-10pt
\begin{itemize}
  \item \href{https://doi.org/10.1103/PhysRevA.72.023412}{[Faisal, Kami\'nski, Saczuk, 2005]}
  $$
    \Psi_{\mathrm{FKS}}(x,t)=\left\{\begin{array}{ll}
      e^{ikx}\exp\left(-ik^2t\right)+\Psi_R(x,t)&\mathrm{\ if\ }x<0\\
      \Psi_T(x,t)&\mathrm{\ if\ }x>0
    \end{array}\right.
  $$
  $$
    \Psi_R(x,t)=\sum_{M\in\mathbb Z}R_Me^{-iq_Mx}\exp\left(-iq_M^2t\right)
    ,\quad
    q_M=\sqrt{k^2+M\omega}
  $$
  $$
    \Psi_T(x,t)=\sum_{M\in\mathbb Z}T_Me^{ip_Mx}\exp\left(-iUt-i\int_0^td\tau\ (p_M-A(\tau))^2\right)
  $$
  $$
    p_M=\sqrt{k^2-U+M\omega-2\epsilon^2}
  $$
  \item $\Psi(x,t)$, $(-i\nabla+\Theta(x)A(t))\Psi(x,t)$ are continuous.
\end{itemize}
\vfill
\eject

\title{Initial value problem}
\begin{itemize}
  \item Initial condition:
  $$
    \Psi(x,0)=
    \left\{ \begin{array}{l@{\ }l}
      e^{ikx}+R_0e^{-ikx} & x<0\\
      T_0 e^{-\sqrt{U-k^2}x} & x>0
    \end{array}\right.  
  $$
  $R_0$ and $T_0$ ensure that $\Psi$ and $\partial\Psi$ are continuous.
  \item In progress: $\Psi(x,t)$ behaves asymptotically like $\Psi_{\mathrm{FKS}}$:
  $$
    \psi(x,t)
    =\psi_{\mathrm{FKS}}(x,t)+\left(\frac{t}{\tau_{\mathrm{FKS}}(x)}\right)^{-\frac32}+O(t^{-\frac52})
    .
  $$
\end{itemize}

\end{document}