diff options
author | Ian Jauslin <jauslin@ias.edu> | 2019-05-14 11:28:19 -0400 |
---|---|---|
committer | Ian Jauslin <jauslin@ias.edu> | 2019-05-14 11:28:19 -0400 |
commit | f34f94a8fd01975cf2e17a8a8a7e04665aed1cca (patch) | |
tree | 102901914bcfd8f117afa2d9127c429d7ad64573 /Jauslin_SMM121_2019.tex |
Diffstat (limited to 'Jauslin_SMM121_2019.tex')
-rw-r--r-- | Jauslin_SMM121_2019.tex | 148 |
1 files changed, 148 insertions, 0 deletions
diff --git a/Jauslin_SMM121_2019.tex b/Jauslin_SMM121_2019.tex new file mode 100644 index 0000000..974976d --- /dev/null +++ b/Jauslin_SMM121_2019.tex @@ -0,0 +1,148 @@ +\documentclass{ian-presentation} + +\usepackage[hidelinks]{hyperref} +\usepackage{graphicx} +\usepackage{array} + +\begin{document} +\pagestyle{empty} +\hbox{}\vfil +\bf\Large +\hfil Exact solution of the time dependent Schrödinger\par +\hfil equation for photoemission from a metal surface +\vfil +\large +\hfil Ian Jauslin +\normalsize +\vfil +\hfil\rm joint with {\bf Ovidiu Costin}, {\bf Rodica Costin}, and {\bf Joel L. Lebowitz}\par +\vfil +\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} +\eject + +\setcounter{page}1 +\pagestyle{plain} + +\title{Electron emission} +$$ + V(x)=U\Theta(x) + ,\quad + E_{\mathrm F}=k_{\mathrm F}^2<U +$$ +\hfil\includegraphics[height=5cm]{potential_square.pdf} +\vfill +\eject + +\title{Thermal emission} +$$ + V(x)=U\Theta(x) + ,\quad + k^2>U +$$ +\hfil\includegraphics[height=5cm]{potential_square_thermal.pdf} +\vfill +\eject + +\title{Field emission} +$$ + V(x)=\Theta(x)(U-Ex) +$$ +\hfil\includegraphics[height=5cm]{potential.pdf} +\vfill +\eject + +\title{Photoemission} +$$ + V_t(x)=\Theta(x)(U-E_tx) + ,\quad + E_t=2\epsilon\omega\cos(\omega t) +$$ +\hfil\includegraphics[height=5cm]{potential_square_photonic.pdf} +\vfill +\eject + +\title{Photoemission} +\begin{itemize} + \item Photoelectric effect: early observations: \href{https://doi.org/10.1002/andp.18872670827}{[Hertz, 1887]}, \href{https://doi.org/10.1002/andp.18882690206}{[Hallwachs, 1888]}, \href{https://doi.org/10.1002/andp.19003070611}{[Lenard, 1900]}. + \item When a metal is irradiated with ultra-violet light, electrons are ionized, with kinetic energies at integer multiples of $\hbar\omega$. + \item \href{https://doi.org/10.1002/andp.19053220607}{[Einstein, 1905]}: interpretation: quanta of light ({\it photons}) of energy $\hbar\omega$ are absorbed by the electrons, whose kinetic energy is raised by $n\hbar\omega$, and can escape the metal. +\end{itemize} +\vfill +\eject + +\title{Photoemission} +\vskip-10pt +\begin{itemize} + \item Time dependent potential: + $$ + V_t(x)=\Theta(x)(U-2\epsilon\omega\cos(\omega t)x) + $$ +\vskip-10pt + \item Schr\"odinger equation + $$ + i\partial_t\psi(x,t)=-\Delta\psi(x,t)+V_t(x)\psi(x,t) + $$ +\vskip-10pt + \item Magnetic gauge: + $$ + \Psi(x,t) + :=\psi(x,t)e^{-ix\Theta(x)A(t)} + ,\quad + A(t):=\int_0^t ds\ 2\epsilon\omega\cos(\omega s) + = + 2\epsilon\sin(\omega t) + $$ + satisfies + $$ + i\partial_t\Psi(x,t)=\left((-i\nabla+\Theta(x)A(t))^2+\Theta(x)U\right)\Psi(x,t) + $$ +\end{itemize} +\vfill +\eject + +\title{Periodic solution} +\vskip-10pt +\begin{itemize} + \item \href{https://doi.org/10.1103/PhysRevA.72.023412}{[Faisal, Kami\'nski, Saczuk, 2005]} + $$ + \Psi_{\mathrm{FKS}}(x,t)=\left\{\begin{array}{ll} + e^{ikx}\exp\left(-ik^2t\right)+\Psi_R(x,t)&\mathrm{\ if\ }x<0\\ + \Psi_T(x,t)&\mathrm{\ if\ }x>0 + \end{array}\right. + $$ + $$ + \Psi_R(x,t)=\sum_{M\in\mathbb Z}R_Me^{-iq_Mx}\exp\left(-iq_M^2t\right) + ,\quad + q_M=\sqrt{k^2+M\omega} + $$ + $$ + \Psi_T(x,t)=\sum_{M\in\mathbb Z}T_Me^{ip_Mx}\exp\left(-iUt-i\int_0^td\tau\ (p_M-A(\tau))^2\right) + $$ + $$ + p_M=\sqrt{k^2-U+M\omega-2\epsilon^2} + $$ + \item $\Psi(x,t)$, $(-i\nabla+\Theta(x)A(t))\Psi(x,t)$ are continuous. +\end{itemize} +\vfill +\eject + +\title{Initial value problem} +\begin{itemize} + \item Initial condition: + $$ + \Psi(x,0)= + \left\{ \begin{array}{l@{\ }l} + e^{ikx}+R_0e^{-ikx} & x<0\\ + T_0 e^{-\sqrt{U-k^2}x} & x>0 + \end{array}\right. + $$ + $R_0$ and $T_0$ ensure that $\Psi$ and $\partial\Psi$ are continuous. + \item In progress: $\Psi(x,t)$ behaves asymptotically like $\Psi_{\mathrm{FKS}}$: + $$ + \psi(x,t) + =\psi_{\mathrm{FKS}}(x,t)+\left(\frac{t}{\tau_{\mathrm{FKS}}(x)}\right)^{-\frac32}+O(t^{-\frac52}) + . + $$ +\end{itemize} + +\end{document} |