Ian Jauslin
summaryrefslogtreecommitdiff
blob: aaa3a805c53840102955c939cf90637bbb15c022 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from matplotlib import pyplot as pl
from matplotlib import animation
import sys

# read data
# time dependent data
frames=[]
# asymptotic data (located in the first block)
asym=[]
infile=open(sys.argv[1],'r')
row=[]
for line in infile:
    # read first block
    if len(asym)==0:
        if line=='\n':
            asym=row
            row=[]
        else:
            dat=[]
            for n in line.split():
                dat.append(float(n))
            row.append(dat)
    # read other blocks
    else:
        if line=='\n':
            frames.append(row)
            row=[]
        else:
            dat=[]
            for n in line.split():
                dat.append(float(n))
            row.append(dat)
infile.close()


# set up plot
fig = pl.figure()
#pl.subplot(211)
axr=fig.gca()
asym_rho, = axr.plot([],[],linewidth=3.5,color='#00FF00')
rho, = axr.plot([],[],color='red')

#pl.subplot(212)
#axJ=fig.gca()
#asym_J, = axJ.plot([],[],linewidth=3.5,color='#00FF00')
#J, = axJ.plot([],[],color='red')

# plot ranges
xmax=0
maxyr=0
maxyJ=0
for frame in frames:
    for i in range(len(frame)):
        if frame[i][1]>xmax:
            xmax=frame[i][1]
        if frame[i][2]>maxyr:
            maxyr=frame[i][2]
        if frame[i][3]>maxyJ:
            maxyJ=frame[i][3]
for i in range(len(asym)):
    if asym[i][0]>xmax:
        xmax=asym[i][0]
    if asym[i][1]>maxyr:
        maxyr=asym[i][1]
    if asym[i][2]>maxyJ:
        maxyJ=asym[i][2]
xmin=0
minyr=0
minyJ=0
for frame in frames:
    for i in range(len(frame)):
        if frame[i][1]<xmin:
            xmin=frame[i][1]
        if frame[i][2]<minyr:
            minyr=frame[i][2]
        if frame[i][3]<minyJ:
            minyJ=frame[i][3]
for i in range(len(asym)):
    if asym[i][0]<xmin:
        xmin=asym[i][0]
    if asym[i][1]<minyr:
        minyr=asym[i][1]
    if asym[i][2]<minyJ:
        minyJ=asym[i][2]


# plot asymptotes
asym_rho_datax=[]
asym_rho_datay=[]
for i in range(len(asym)):
    asym_rho_datax.append(asym[i][0])
    asym_rho_datay.append(asym[i][1])
asym_rho.set_data(asym_rho_datax,asym_rho_datay)
#asym_J_datax=[]
#asym_J_datay=[]
#for i in range(len(asym)):
#    asym_J_datax.append(asym[i][0])
#    asym_J_datay.append(asym[i][2])
#asym_J.set_data(asym_J_datax,asym_J_datay)

# animate
def init_plot():
    axr.set_ylim(minyr,maxyr)
    axr.set_xlim(xmin,xmax)
    #axJ.set_ylim(minyJ,maxyJ)
    #axJ.set_xlim(xmin,xmax)

    axr.vlines(0,minyr,maxyr,linestyles="dotted")
    #axJ.vlines(0,minyJ,maxyJ,linestyles="dotted")
def update(frame):
    axr.set_title("t=% .3f fs" % (frame[0][0]))
    xdata=[]
    ydata=[]
    for i in range(len(frame)):
        xdata.append(frame[i][1])
        ydata.append(frame[i][2])
    rho.set_data(xdata,ydata)

    #xdata=[]
    #ydata=[]
    #for i in range(len(frame)):
    #    xdata.append(frame[i][1])
    #    ydata.append(frame[i][3])
    #J.set_data(xdata,ydata)
anim = animation.FuncAnimation(fig, update, frames=frames, blit=False, interval=100, repeat=True, init_func=init_plot)
#anim.save('schrodinger_barrier.mp4', fps=15, extra_args=['-vcodec', 'libx264'])
pl.show()