1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
using FFTW
using Printf
using SpecialFunctions
using LinearAlgebra
# numerical values
hbar=6.58e-16 # eV.s
m=9.11e-31 # kg
V_=6.6 # eV
I=1e17 # W/m^2
EF=3.3 # eV
omega_=1.5498*4 # eV
# dimensionless quantities
V=1
k=sqrt(EF/V_)
epsilon=sqrt(hbar^3*I/(8*m*V_*omega_^2))
omega=omega_/V_
#epsilon=8*epsilon
#omega=4*omega
nu=60
ell=20
# for Crank-Nicolson
xmin_cn=-100
xmax_cn=100
nx_cn=4000
tmax=10
# mu=dt/dx^2
mu=0.1
nt=floor(Int,tmax/(mu*((xmax_cn-xmin_cn)/nx_cn)^2))
# only save up to memt time steps
memt=10000
# asymptotic value of \varphi_t(x)
function phi_asym(x,T,gkz,k,epsilon,omega,V,nu,ell)
# compute residues
res=residue(x,T,gkz,k,epsilon,omega,V,nu)
times=compute_times(omega,nu,ell)
N=(2*nu+1)*(2*ell+1)
fun=zeros(Complex{Float64},N)
for m in 1:N
for n in -nu:nu
fun[m]+=-1im*res[n+nu+1]*exp(-1im*(k*k+n*omega)*times[m])
end
end
return fun
end
# asymptotic value of \partial\varphi_t(x)
function dphi_asym(x,T,gkz,k,epsilon,omega,V,nu,ell)
# compute residues
res=dresidue(x,T,gkz,k,epsilon,omega,V,nu)
times=compute_times(omega,nu,ell)
N=(2*nu+1)*(2*ell+1)
fun=zeros(Complex{Float64},N)
for m in 1:N
for n in -nu:nu
fun[m]+=-1im*res[n+nu+1]*exp(-1im*(k*k+n*omega)*times[m])
end
end
return fun
end
# return times
function compute_times(omega,nu,ell)
N=(2*nu+1)*(2*ell+1)
times=zeros(N)
for j in 1:N
times[j]=pi/(omega*(nu+0.5))*(j-1)
end
return times
end
# \kappa_m^{(\sigma)}
function K(m,sigma,V,k,epsilon,omega)
return pow(V+2*epsilon*epsilon-k*k-sigma-m*omega,0.5,pi/2)
end
# mathfrak q_k
function Q(k,V)
return sqrt(V-k*k)
end
# T_0
function T0(k,V)
return 2im*k/(1im*k-sqrt(V-k*k))
end
# compute g
function g(kappa,epsilon,omega,N)
B=zeros(Complex{Float64},N)
# prepare vector of B's
for i in 1:N
t=2*pi/(omega*N)*(i-1)
B[i]=exp(1im*epsilon*epsilon/omega*sin(2*omega*t)-kappa*4*epsilon/omega*cos(omega*t))
end
# take the fft
fft!(B)
# correct by a factor 1/N
for i in 1:N
B[i]=B[i]/N
end
return(B)
end
# index of m-n
function mmn(n,nu)
return (n>=0 ? n+1 : n+4*nu+2)
end
# compute residues at -ik^2-in\omega
function residue(x,T,gkz,k,epsilon,omega,V,nu)
# compute residue
out=zeros(Complex{Float64},2*nu+1)
if x>=0
for n in -nu:nu
for m in -nu:nu
out[n+nu+1]+=1im*gkz[m+nu+1][mmn(n-m,nu)]*exp(-K(m,0,V,k,epsilon,omega)*x)*T[m+nu+1]
end
end
else
for n in -nu:nu
out[n+nu+1]=(n==0 ? 1im*(exp(1im*k*x)-exp(-1im*k*x)) : 0)
for m in -nu:nu
out[n+nu+1]+=1im*T[m+nu+1]*gkz[m+nu+1][mmn(n-m,nu)]*exp(-1im*x*pow(k*k+n*omega,0.5,-pi/2))
end
end
end
return out
end
# compute \partial residues at -ik^2-in\omega
function dresidue(x,T,gkz,k,epsilon,omega,V,nu)
# compute residue
out=zeros(Complex{Float64},2*nu+1)
if x>=0
for n in -nu:nu
for m in -nu:nu
out[n+nu+1]+=-K(m,0,V,k,epsilon,omega)*1im*gkz[m+nu+1][mmn(n-m,nu)]*exp(-K(m,0,V,k,epsilon,omega)*x)*T[m+nu+1]
end
end
else
for n in -nu:nu
out[n+nu+1]=(n==0 ? -k*(exp(1im*k*x)+exp(-1im*k*x)) : 0)
for m in -nu:nu
out[n+nu+1]+=pow(k*k+n*omega,0.5,-pi/2)*T[m+nu+1]*gkz[m+nu+1][mmn(n-m,nu)]*exp(-1im*x*pow(k*k+n*omega,0.5,-pi/2))
end
end
end
return out
end
# matching condition for residue
function residue_matching(k,epsilon,omega,V,nu)
# preliminary: g^{(\kappa_m^{(0)})}
# g^{(\kappa_m^{(0)})}_n=gkz[m+nu+1][n+1] if n>=0 and gkz[m+nu+1][n+4*nu+2] if n<0
gkz=Array{Array{Complex{Float64}},1}(undef,2*nu+1)
for m in -nu:nu
gkz[m+nu+1]=g(K(m,0,V,k,epsilon,omega),epsilon,omega,4*nu+1)
end
# solve matching condition
G=zeros(Complex{Float64},2*nu+1,2*nu+1)
v=zeros(Complex{Float64},2*nu+1)
for n in -nu:nu
for m in -nu:nu
G[n+nu+1,m+nu+1]=((K(m,0,V,k,epsilon,omega)-1im*pow(k*k+n*omega,0.5,-pi/2))*gkz[m+nu+1][mmn(n-m,nu)]-epsilon*(gkz[m+nu+1][mmn(n-m+1,nu)]-gkz[m+nu+1][mmn(n-m-1,nu)]))
end
end
v[nu+1]=-2im*k
return (G\v,gkz)
end
# fractional power with an arbitrary branch cut
function pow(x,a,cut)
if(angle(x)/cut<=1)
return(abs(x)^a*exp(1im*angle(x)*a))
else
return(abs(x)^a*exp(1im*(angle(x)-sign(cut)*2*pi)*a))
end
end
# current
function J(phi,dphi,x,epsilon,omega,t)
if x>=0
return(2*imag(conj(phi)*(dphi+2im*epsilon*sin(omega*t)*phi)))
else
return(2*imag(conj(phi)*dphi))
end
end
# compute \psi_t(x) using Crank-Nicolson
function psi_cn(V,omega,epsilon,k,xs,ts,memt)
nx=length(xs)
nt=length(ts)
# length of output vector
len=min(nt,memt)
# how often to write to output
freq=ceil(Int,nt/memt)
# initialize
psis=zeros(Complex{Float64},nx,len)
times=zeros(Float64,len)
# previous time step
psi_prev=zeros(Complex{Float64},nx)
# init
for i in 1:nx
times[1]=0
psis[i,1]=(xs[i]<0 ? exp(1im*k*xs[i])+(T0(k,V)-1)*exp(-1im*k*xs[i]) : T0(k,V)*exp(-Q(k,V)*xs[i]))
psi_prev[i]=psis[i,1]
end
# the boundary condition is that psi at the boundary is constant (nothing needs to be done for this)
# matrix structure of the Crank-Nicolson algorithm
# diagonals of M
M0=zeros(Complex{Float64},nx-2)
Mp=zeros(Complex{Float64},nx-3)
Mm=zeros(Complex{Float64},nx-3)
v=zeros(Complex{Float64},nx-2)
for j in 1:nt-1
# print progress
progress(j,nt-1,1000)
# t_j
t=ts[j]
# t_{j+1}
tp=ts[j+1]
dt=tp-t
for mu in 2:nx-1
# x_mu
x=xs[mu]
dx2=(xs[mu+1]-xs[mu])*(xs[mu]-xs[mu-1])
# tridiagonal matrix
M0[mu-1]=1im/dt-1/dx2-(x<0 ? 0 : (V-2*epsilon*omega*cos(omega*tp)*x)/2)
if mu<nx-1
Mp[mu-1]=1/(2*dx2)
end
if mu>2
Mm[mu-2]=1/(2*dx2)
end
# right side
v[mu-1]=1im*psi_prev[mu]/dt-(psi_prev[mu+1]+psi_prev[mu-1]-2*psi_prev[mu])/(2*dx2)+(x<0 ? 0 : (V-2*epsilon*omega*cos(omega*t)*x)*psi_prev[mu]/2)
# correct for boundary conditions
# assumes the boundary condition is constant in time!
if mu==2
v[mu-1]-=psi_prev[1]/(2*dx2)
end
if mu==nx-1
v[mu-1]-=psi_prev[nx]/(2*dx2)
end
end
M=Tridiagonal(Mm,M0,Mp)
# copy to psi_prev
psi_prev[2:nx-1]=M\v
# write to output
if j%freq==0
psis[:,Int(j/freq)+1]=psi_prev
times[Int(j/freq)+1]=tp
end
end
return (times,psis)
end
# returns the times in b that are closest to those in a
# assumes the vectors are ordered
function nearest_times(a,b)
out=zeros(Int,length(a))
pointer=1
for i in 1:length(a)
if pointer==length(b)
out[i]=length(b)
end
for j in pointer:length(b)-1
if b[j+1]>a[i]
out[i]=(abs(b[j+1]-a[i])<abs(b[j]-a[i]) ? j+1 : j)
pointer=out[i]
break
end
# all remaining points are beyond the range
if j==length(b)-1
out[i]=length(b)
pointer=out[i]
end
end
end
return out
end
# space derivative using Crank Nicolson
function deriv_cn(phi,i,xs)
if i==1
return (phi[i+1]-phi[i])/(xs[i+1]-xs[i])
end
if i==length(phi)
return (phi[i]-phi[i-1])/(xs[i]-xs[i-1])
end
return (phi[i+1]-phi[i])/(xs[i+1]-xs[i])/2 + (phi[i]-phi[i-1])/(xs[i]-xs[i-1])/2
end
################################################
# print progress
function progress(j,tot,freq)
if (j-1)%ceil(Int,tot/freq)==0
if j>1
@printf(stderr,"\r")
end
@printf(stderr,"%d/%d",j,tot)
end
if j==tot
@printf(stderr,"%d/%d\n",j,tot)
end
end
# print animation data using Crank Nicolson and compare to Laplace
function print_anim_cn_cmp()
@printf(stderr,"epsilon=% .8e omega=% .8e k=% .8e V=% .8e z=% .8e T=% .8e gamma=% .8e\n",epsilon,omega,k,V,4*sqrt(nu)*epsilon/sqrt(omega),2*pi/(omega_/hbar)*1e15,sqrt((V-k^2)/(4*epsilon^2)))
xmin=-10
xmax=10
nx=200
# array of times for the asymptote
times=compute_times(omega,nu,ell)
# positions at which to compute phi
xs=Array(0:nx_cn)*(xmax_cn-xmin_cn)/nx_cn.+xmin_cn
# times at which to compute phi
ts=Array(0:nt-1)*tmax/nt
# compute matching condition
(T,gkz)=residue_matching(k,epsilon,omega,V,nu)
# compute wave function
(t_psi,psi)=psi_cn(V,omega,epsilon,k,xs,ts,memt)
# nearest times using Crank Nicolson
indices_t=nearest_times(times,t_psi)
indices_x=nearest_times(Array(0:nx-1)*(xmax-xmin)/nx.+xmin,xs)
ps_cn=Array{Array{Complex{Float64},1}}(undef,nx)
ps_asym=Array{Array{Complex{Float64},1}}(undef,nx)
dps_cn=Array{Array{Complex{Float64},1}}(undef,nx)
dps_asym=Array{Array{Complex{Float64},1}}(undef,nx)
for i in 1:nx
progress(i,nx,1000)
x=xmin+(xmax-xmin)*(i-1)/nx
ps_cn[i]=Array{Complex{Float64}}(undef,length(times))
dps_cn[i]=Array{Complex{Float64}}(undef,length(times))
for j in 1:length(times)
# phase change in magnetic gauge
phase=(x<0 ? 1 : exp(-2im*epsilon*sin(omega*times[j])*x))
ps_cn[i][j]=phase*psi[indices_x[i],indices_t[j]]
dps_cn[i][j]=phase*deriv_cn(psi[:,indices_t[j]],indices_x[i],xs)-(xs[indices_x[i]]<0 ? 0 : 2im*epsilon*sin(omega*times[j])*psi[indices_x[i],indices_t[j]])
end
ps_asym[i]=phi_asym(x,T,gkz,k,epsilon,omega,V,nu,ell)
dps_asym[i]=dphi_asym(x,T,gkz,k,epsilon,omega,V,nu,ell)
end
# print values at each time
for j in 1:length(times)
if times[j]>tmax
break
end
for i in 1:nx
x=(xmin+(xmax-xmin)*i/nx)
# remove point at 0
if i!=Int(nx/2)
@printf("% .8e % .8e % .8e % .8e % .8e % 8e\n",times[j]*hbar/V_*1e15,x*sqrt(hbar^2*1.6e-19/(2*m*V_))*1e9,abs(ps_asym[i][j])^2,abs(ps_cn[i][j])^2,J(ps_asym[i][j],dps_asym[i][j],x,epsilon,omega,times[j]),J(ps_cn[i][j],dps_cn[i][j],x,epsilon,omega,times[j]))
end
end
print('\n')
end
end
print_anim_cn_cmp()
|