Ian Jauslin
summaryrefslogtreecommitdiff
blob: 50b9beaeb66a294c361809c9fcd6880e9dd7a25b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
\documentclass{ian-presentation}

\usepackage[hidelinks]{hyperref}
\usepackage{graphicx}
\usepackage{array}

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf\Large
\hfil Solution of time-dependent Schr\"odinger equation\par
\smallskip
\hfil  for field emission\par
\vfil
\large
\hfil Ian Jauslin
\normalsize
\vfil
\hfil\rm joint with {\bf Ovidiu Costin}, {\bf Rodica Costin}, and {\bf Joel L. Lebowitz}\par
\vfil
arXiv:{\tt \href{http://arxiv.org/abs/1808.00936}{1808.00936}}\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
\eject

\setcounter{page}1
\pagestyle{plain}

\title{Field emission}
\vfill
\hfil\includegraphics[height=5cm]{emitter.jpg}
\vfill
\eject

\title{Emitter}
$$
  V(x)=U\Theta(x)
$$
\hfil\includegraphics[height=5cm]{potential_square.pdf}
\vfill
\eject

\title{Semi-classical model}
$$
  V_t(x)=\Theta(x)(U-E_tx)
  ,\quad
  E_t=e_0+e_1\cos(\omega t)
$$
\hfil\includegraphics[height=5cm]{potential.pdf}
\vfill
\eject

\title{Triangular barrier}
$$
  V(x)=\Theta(x)(U-Ex)
$$
\hfil\includegraphics[height=5cm]{potential.pdf}
\vfill
\eject

\title{Field emission through a triangular barrier}
\begin{itemize}
  \item \href{https://doi.org/10.1073\%2Fpnas.14.1.45}{[Millikan, Lauritsen, 1928]}: experimental plot of the logarithm of the current against $1/E$
\end{itemize}
\hfil\includegraphics[height=4.5cm]{Millikan-Lauritsen_current.png}
\vfill
\eject

\title{Field emission through a triangular barrier}
\vfill
\begin{itemize}
  \item \href{https://doi.org/10.1098/rspa.1928.0091}{[Fowler, Nordheim, 1928]}: predicted that the current is, for small $E$,
  $$
    J\approx Ce^{-\frac aE}
  $$
  \item (\href{https://doi.org/10.1088/1751-8113/44/5/05530@}{[Rokhlenko, 2011]}: studied the range of applicability of the approximation, and found more accurate approximations for larger fields.)
\end{itemize}
\vfill
\eject

\title{Fowler-Nordheim equation}
\begin{itemize}
  \item Schr\"odinger equation
  $$
    i\partial_t\psi=-\Delta\psi+\Theta(x)(U-Ex)\psi
  $$
  \item Fowler-Nordheim: quasi-stationary solution: $\psi_{\mathrm{FN}}(x,t)=e^{-ik^2t}\varphi_{\mathrm{FN}}(x)$
  $$
    \varphi_{\mathrm{FN}}(x)=
    \left\{ \begin{array}{l@{\ }l}
      e^{ikx}+R_Ee^{-ikx} & x<0\\
      T_E\mathrm{Ai}(e^{-\frac{i\pi}3}(E^{\frac13}x-E^{-\frac23}(U-k^2)) & x>0
    \end{array}\right.  
  $$
  $R_E$ and $T_E$ are chosen so that $\varphi_{\mathrm{FN}}$ and $\partial\varphi_{\mathrm{FN}}$ are continuous at $x=0$.
\end{itemize}
\vfill
\eject

\title{Fowler-Nordheim equation}
\vfill
\hfil\includegraphics[height=5.5cm]{asymptotic.pdf}
\vfill
\eject

\title{Initial value problem}
\begin{itemize}
  \item Initial condition:
  $$
    \psi(x,0)=
    \left\{ \begin{array}{l@{\ }l}
      e^{ikx}+R_0e^{-ikx} & x<0\\
      T_0 e^{-\sqrt{U-k^2}x} & x>0
    \end{array}\right.  
  $$
  $R_0$ and $T_0$ ensure that $\psi$ and $\partial\psi$ are continuous.
  \item Behaves asymptotically like $\psi_{\mathrm{FN}}$:
  $$
    \psi(x,t)e^{ik^2t}\mathop{\longrightarrow}_{t\to\infty}\varphi_{\mathrm{FN}}(x)
  $$
\end{itemize}
\vfill
\eject

\title{Initial value problem}
\begin{itemize}
  \item Laplace transform:
  $$
    \hat\psi_p(x):=\int_0^\infty dt\ e^{-pt}\psi(x,t)
  $$
  \item Schr\"odinger equation:
  $$
    (-\Delta+\Theta(x)V(x)-ip)\psi_p(x)=-i\psi(x,0)
    ,\quad
    V(x):=U-Ex
  $$
\end{itemize}
\vfill
\eject

\title{Solution in Laplace space}
\begin{itemize}
  \item For simplicity, $R_0\equiv T_0\equiv0$.
  \item Solution:
  $$
    \hat\psi_p(x)=
    \left\{\begin{array}{>\displaystyle l@{\ }l}
      C_1(p)e^{\sqrt{-ip}x}-\frac{ie^{ikx}}{-ip+k^2}
      &\mathrm{if\ }x<0\\[0.5cm]
      C_2(p)\varphi_p(x)
      &\mathrm{if\ }x> 0
    \end{array}\right.
  $$
  with
  $$
    (-\Delta+V(x)-ip)\varphi_p(x)=0
  $$
  $$
    \varphi_p(x)=\mathrm{Ai}\left(e^{-\frac{i\pi}3}\left(E^{\frac13}x-E^{-\frac23}(U-ip)\right)\right)
  $$
\end{itemize}
\vfill
\eject

\title{Solution in Laplace space}
\begin{itemize}
  \item $C_1$ and $C_2$ ensure that $\hat\psi_p(x)$ and $\partial\hat\psi_p(x)$ are continuous at $x=0$:
  $$
    C_1(p)=\frac{i(ik\varphi_p(0)-\partial\varphi_p(0))}{(-ip+k^2)(\sqrt{-ip}\varphi_p(0)-\partial\varphi_p(0))}
  $$
  $$
    C_2(p)=-\frac{i}{(\sqrt{-ip}+ik)(\sqrt{-ip}\varphi_p(0)-\partial\varphi_p(0))}.
  $$
\end{itemize}
\vfill
\eject

\title{Poles in Laplace plane}
\vfill
\hfil\includegraphics[height=5.5cm]{contour.pdf}
\vfill
\eject

\title{Asymptotic behavior}
\begin{itemize}
  \item As $t\to\infty$:
  $$
    \psi(x,t)
    =\psi_{\mathrm{FN}}(x,t)+\left(\frac{t}{\tau_E(x)}\right)^{-\frac32}+O(t^{-\frac52})
    .
  $$

  \item If $k<0$ (reflected wave), then there is no pole on the imaginary axis, so there is no contribution as $t\to\infty$.
  \item Similarly, the transmitted wave in the initial condition does not contribute.
\end{itemize}
\vfill
\eject

\title{Laser field}
\begin{itemize}
  \item Time dependent potential:
  $$
    V_t(x)=\Theta(x)(U-\epsilon\omega\cos(\omega t)x)
  $$
  \item Magnetic gauge:
  $$
    \Psi(x,t):=
    :=\psi(x,t)e^{-ix\Theta(x)A(t)}
    ,\quad
    A(t):=\int_0^t ds\ \epsilon\omega\cos(\omega s)
  =
  \epsilon\sin(\omega t)
  $$
  satisfies
  $$
    i\partial_t\Psi(x,t)=\left((-i\nabla+\Theta(x)A(t))^2+\Theta(x)U\right)\Psi(x,t)
  $$
\end{itemize}
\vfill
\eject

\title{Periodic solution}
\begin{itemize}
  \item A solution:
  $$
    \Psi(x,t)=\left\{\begin{array}{ll}
      \Psi_I(x,t)+\Psi_R(x,t)&\mathrm{\ if\ }x<0\\
      \Psi_T(x,t)&\mathrm{\ if\ }x>0
    \end{array}\right.
  $$
  $$
    \Psi_I(x,t)=e^{ikx}\exp\left(-ik^2t\right)
  $$
  $$
    \Psi_R(x,t)=\sum_{M\in\mathbb Z}R_Me^{iq_Mx}\exp\left(-iq_M^2t\right)
  $$
  $$
    \Psi_T(x,t)=\sum_{M\in\mathbb Z}T_Me^{ip_Mx}\exp\left(-iUt-i\int_0^td\tau\ (p_M+A(\tau))^2\right)
  $$
\end{itemize}
\vfill
\eject

\title{Periodic solution}
\begin{itemize}
  \item Choose $q_M$ and $p_M$ to make the solution periodic (up to the phase $e^{ik^2t}$):
  $$
    q_M=\pm\sqrt{k^2+M\omega}
    ,\quad
    p_M=\pm\sqrt{k^2-U+M\omega-U_V}
  $$
  and
  $$
    U_V:=\frac\omega{2\pi}\int_0^{\frac{2\pi}\omega} d\tau\ A^2(\tau)
    =\frac{\epsilon^2}2
    .
  $$
\end{itemize}


\end{document}