diff options
| author | Ian Jauslin <jauslin@ias.edu> | 2018-11-13 16:34:13 +0000 | 
|---|---|---|
| committer | Ian Jauslin <jauslin@ias.edu> | 2018-11-13 16:34:13 +0000 | 
| commit | c3e8a07c41898f35bdebb298a788aed294e44369 (patch) | |
| tree | f4bc1f1d9c1e1533f45ff8f938752c8096035aaf /Jauslin_Princeton_2018b.tex | |
Diffstat (limited to 'Jauslin_Princeton_2018b.tex')
| -rw-r--r-- | Jauslin_Princeton_2018b.tex | 271 | 
1 files changed, 271 insertions, 0 deletions
| diff --git a/Jauslin_Princeton_2018b.tex b/Jauslin_Princeton_2018b.tex new file mode 100644 index 0000000..83c3a1b --- /dev/null +++ b/Jauslin_Princeton_2018b.tex @@ -0,0 +1,271 @@ +\documentclass{ian-presentation} + +\usepackage[hidelinks]{hyperref} +\usepackage{graphicx} +\usepackage{array} + +\begin{document} +\pagestyle{empty} +\hbox{}\vfil +\bf\Large +\hfil Field electron emission\par +\smallskip +\hfil and the Fowler-Nordheim equation\par +\vfil +\large +\hfil Ian Jauslin +\normalsize +\vfil +\hfil\rm joint with {\bf Ovidiu Costin}, {\bf Rodica Costin}, and {\bf Joel L. Lebowitz}\par +\vfil +arXiv:{\tt \href{http://arxiv.org/abs/1808.00936}{1808.00936}}\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} +\eject + +\setcounter{page}1 +\pagestyle{plain} + +\title{Field emission} +\vfill +\hfil\includegraphics[height=5cm]{emitter.jpg} +\vfill +\eject + +\title{Field emission} +$$ +  V(x)=U\Theta(x) +  ,\quad +  E_{\mathrm F}=k_{\mathrm F}^2<U +$$ +\hfil\includegraphics[height=5cm]{potential_square.pdf} +\vfill +\eject + +\title{Thermal emission} +$$ +  V(x)=U\Theta(x) +  ,\quad +  E_{\mathrm F}=k_{\mathrm F}^2>U +$$ +\hfil\includegraphics[height=5cm]{potential_square_thermal.pdf} +\vfill +\eject + +\title{Photonic emission} +$$ +  V_t(x)=\Theta(x)(U-E_tx) +  ,\quad +  E_t=\epsilon\omega\cos(\omega t) +$$ +\hfil\includegraphics[height=5cm]{potential_square_photonic.pdf} +\vfill +\eject + +\title{Field emission} +$$ +  V(x)=\Theta(x)(U-Ex) +$$ +\hfil\includegraphics[height=5cm]{potential.pdf} +\vfill +\eject + +\title{Field emission} +\begin{itemize} +  \item \href{https://doi.org/10.1073\%2Fpnas.14.1.45}{[Millikan, Lauritsen, 1928]}: experimental plot of the logarithm of the current against $1/E$ +\end{itemize} +\hfil\includegraphics[height=4.5cm]{Millikan-Lauritsen_current.png} +\vfill +\eject + +\title{Field emission through a triangular barrier} +\vfill +\begin{itemize} +  \item \href{https://doi.org/10.1098/rspa.1928.0091}{[Fowler, Nordheim, 1928]}: predicted that the current is, for small $E$, +  $$ +    J\approx CE^2e^{-\frac aE} +  $$ +  \item (\href{https://doi.org/10.1088/1751-8113/44/5/05530@}{[Rokhlenko, 2011]}: studied the range of applicability of the approximation, and found more accurate approximations for larger fields.) +\end{itemize} +\vfill +\eject + +\title{Fowler-Nordheim equation} +\begin{itemize} +  \item Schr\"odinger equation +  $$ +    i\partial_t\psi=-\Delta\psi+\Theta(x)(U-Ex)\psi +  $$ +  \item Fowler-Nordheim: stationary solution: $\psi_{\mathrm{FN}}(x,t)=e^{-ik^2t}\varphi_{\mathrm{FN}}(x)$ +  $$ +    \varphi_{\mathrm{FN}}(x)= +    \left\{ \begin{array}{l@{\ }l} +      e^{ikx}+R_Ee^{-ikx} & x<0\\ +      T_E\mathrm{Ai}(e^{-\frac{i\pi}3}(E^{\frac13}x-E^{-\frac23}(U-k^2)) & x>0 +    \end{array}\right.   +  $$ +  $R_E$ and $T_E$ are chosen so that $\varphi_{\mathrm{FN}}$ and $\partial\varphi_{\mathrm{FN}}$ are continuous at $x=0$. +\end{itemize} +\vfill +\eject + +\title{Fowler-Nordheim equation} +\vfill +\hfil\includegraphics[height=5.5cm]{asymptotic.pdf} +\vfill +\eject + +\title{Initial value problem} +\begin{itemize} +  \item Initial condition: +  $$ +    \psi(x,0)= +    \left\{ \begin{array}{l@{\ }l} +      e^{ikx}+R_0e^{-ikx} & x<0\\ +      T_0 e^{-\sqrt{U-k^2}x} & x>0 +    \end{array}\right.   +  $$ +  $R_0$ and $T_0$ ensure that $\psi$ and $\partial\psi$ are continuous. +  \item Behaves asymptotically like $\psi_{\mathrm{FN}}$: +  $$ +    \psi(x,t)e^{ik^2t}\mathop{\longrightarrow}_{t\to\infty}\varphi_{\mathrm{FN}}(x) +  $$ +\end{itemize} +\vfill +\eject + +\title{Initial value problem} +\begin{itemize} +  \item Laplace transform: +  $$ +    \hat\psi_p(x):=\int_0^\infty dt\ e^{-pt}\psi(x,t) +  $$ +  \item Schr\"odinger equation: +  $$ +    (-\Delta+\Theta(x)V(x)-ip)\psi_p(x)=-i\psi(x,0) +    ,\quad +    V(x):=U-Ex +  $$ +\end{itemize} +\vfill +\eject + +\title{Solution in Laplace space} +\begin{itemize} +  \item For simplicity, $R_0\equiv T_0\equiv0$. +  \item Solution: +  $$ +    \hat\psi_p(x)= +    \left\{\begin{array}{>\displaystyle l@{\ }l} +      C_1(p)e^{\sqrt{-ip}x}-\frac{ie^{ikx}}{-ip+k^2} +      &\mathrm{if\ }x<0\\[0.5cm] +      C_2(p)\varphi_p(x) +      &\mathrm{if\ }x> 0 +    \end{array}\right. +  $$ +  with +  $$ +    (-\Delta+V(x)-ip)\varphi_p(x)=0 +  $$ +  $$ +    \varphi_p(x)=\mathrm{Ai}\left(e^{-\frac{i\pi}3}\left(E^{\frac13}x-E^{-\frac23}(U-ip)\right)\right) +  $$ +\end{itemize} +\vfill +\eject + +\title{Solution in Laplace space} +\begin{itemize} +  \item $C_1$ and $C_2$ ensure that $\hat\psi_p(x)$ and $\partial\hat\psi_p(x)$ are continuous at $x=0$: +  $$ +    C_1(p)=\frac{i(ik\varphi_p(0)-\partial\varphi_p(0))}{(-ip+k^2)(\sqrt{-ip}\varphi_p(0)-\partial\varphi_p(0))} +  $$ +  $$ +    C_2(p)=-\frac{i}{(\sqrt{-ip}+ik)(\sqrt{-ip}\varphi_p(0)-\partial\varphi_p(0))}. +  $$ +\end{itemize} +\vfill +\eject + +\title{Poles in Laplace plane} +\vfill +\hfil\includegraphics[height=5.5cm]{contour.pdf} +\vfill +\eject + +\title{Asymptotic behavior} +\begin{itemize} +  \item As $t\to\infty$: +  $$ +    \psi(x,t) +    =\psi_{\mathrm{FN}}(x,t)+\left(\frac{t}{\tau_E(x)}\right)^{-\frac32}+O(t^{-\frac52}) +    . +  $$ + +  \item If $k<0$ (reflected wave), then there is no pole on the imaginary axis, so there is no contribution as $t\to\infty$. +  \item Similarly, the transmitted wave in the initial condition does not contribute. +\end{itemize} +\vfill +\eject + +\title{Laser field} +\begin{itemize} +  \item Time dependent potential: +  $$ +    V_t(x)=\Theta(x)(U-\epsilon\omega\cos(\omega t)x) +  $$ +  \item Magnetic gauge: +  $$ +    \Psi(x,t) +    :=\psi(x,t)e^{-ix\Theta(x)A(t)} +    ,\quad +    A(t):=\int_0^t ds\ \epsilon\omega\cos(\omega s) +  = +  \epsilon\sin(\omega t) +  $$ +  satisfies +  $$ +    i\partial_t\Psi(x,t)=\left((-i\nabla+\Theta(x)A(t))^2+\Theta(x)U\right)\Psi(x,t) +  $$ +\end{itemize} +\vfill +\eject + +\title{Periodic solution} +\begin{itemize} +  \item A solution: +  $$ +    \Psi(x,t)=\left\{\begin{array}{ll} +      \Psi_I(x,t)+\Psi_R(x,t)&\mathrm{\ if\ }x<0\\ +      \Psi_T(x,t)&\mathrm{\ if\ }x>0 +    \end{array}\right. +  $$ +  $$ +    \Psi_I(x,t)=e^{ikx}\exp\left(-ik^2t\right) +  $$ +  $$ +    \Psi_R(x,t)=\sum_{M\in\mathbb Z}R_Me^{iq_Mx}\exp\left(-iq_M^2t\right) +  $$ +  $$ +    \Psi_T(x,t)=\sum_{M\in\mathbb Z}T_Me^{ip_Mx}\exp\left(-iUt-i\int_0^td\tau\ (p_M+A(\tau))^2\right) +  $$ +\end{itemize} +\vfill +\eject + +\title{Periodic solution} +\begin{itemize} +  \item Choose $q_M$ and $p_M$ to make the solution periodic (up to the phase $e^{ik^2t}$): +  $$ +    q_M=\pm\sqrt{k^2+M\omega} +    ,\quad +    p_M=\pm\sqrt{k^2-U+M\omega-U_V} +  $$ +  and +  $$ +    U_V:=\frac\omega{2\pi}\int_0^{\frac{2\pi}\omega} d\tau\ A^2(\tau) +    =\frac{\epsilon^2}2 +    . +  $$ +\end{itemize} + + +\end{document} | 
