Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorIan Jauslin <jauslin@ias.edu>2018-02-23 11:21:38 +0000
committerIan Jauslin <jauslin@ias.edu>2018-02-23 11:21:38 +0000
commitcaa6b27599fba3b518a5c5847a4a72a5bdf9065b (patch)
treef95aa70a50dfd4ba2bfe1bc13ed60c645c2946ed /Jauslin_MCQM_2018.tex
As presentedat MCQM2018, on 2018-02-23HEADv1.0master
Diffstat (limited to 'Jauslin_MCQM_2018.tex')
-rw-r--r--Jauslin_MCQM_2018.tex168
1 files changed, 168 insertions, 0 deletions
diff --git a/Jauslin_MCQM_2018.tex b/Jauslin_MCQM_2018.tex
new file mode 100644
index 0000000..7609b39
--- /dev/null
+++ b/Jauslin_MCQM_2018.tex
@@ -0,0 +1,168 @@
+\documentclass{ian-presentation}
+
+\usepackage[hidelinks]{hyperref}
+\usepackage{graphicx}
+\usepackage{dsfont}
+
+\begin{document}
+\pagestyle{empty}
+\hbox{}\vfil
+\bf\Large
+\hfil Liquid crystals\par
+\smallskip
+\hfil and the Heilmann-Lieb model\par
+\vfil
+\large
+\hfil Ian Jauslin
+\normalsize
+\vfil
+\hfil\rm joint with {\bf Elliott H. Lieb}\par
+\vfil
+arXiv: {\tt \href{http://arxiv.org/abs/1709.05297}{1709.05297}}
+\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
+\eject
+
+\setcounter{page}1
+\pagestyle{plain}
+
+\title{Liquid crystals}
+\begin{itemize}
+ \item Orientational order and positional disorder.
+\end{itemize}
+\hfil\includegraphics[width=5cm]{nematic.png}
+\hfil\includegraphics[width=5cm]{chiral.png}
+\vfill
+\eject
+
+\title{History}
+\begin{itemize}
+ \item \href{http://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x}{[Onsager, 1949]}: mean field model for hard needles in $\mathbb R^3$.
+ \item \href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]}: interacting dimers.
+\vphantom{
+ \item \href{http://dx.doi.org/10.1007/BF00535264}{[Bricmont, Kuroda, Lebowitz, 1984]}: hard needles in $\mathbb R^2$ with a {\it finite} number of orientations.
+ \item \href{http://dx.doi.org/10.1007/s10955-005-8085-8}{[Ioffe, Velenik, Zahradn\'\i k, 2006]}: hard rods in $\mathbb Z^2$ (variable length).
+ \item \href{http://dx.doi.org/10.1007/s00220-013-1767-1}{[Disertori, Giuliani, 2013]}: hard rods in $\mathbb Z^2$.
+}
+\end{itemize}
+\vfill
+\eject
+
+\title{Heilmann-Lieb model}
+\hfil\href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]}
+\vfil
+\hfil\includegraphics[width=5cm]{grid.pdf}
+\vfil\eject
+
+\addtocounter{page}{-1}
+\title{Heilmann-Lieb model}
+\hfil\href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]}
+\vfil
+\hfil\includegraphics[width=5cm]{dimers.pdf}
+\vfil\eject
+
+\addtocounter{page}{-1}
+\title{Heilmann-Lieb model}
+\hfil\href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]}
+\vfil
+\hfil\includegraphics[width=5cm]{interaction.pdf}
+\vfil\eject
+
+\title{History}
+\begin{itemize}
+ \item \href{http://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x}{[Onsager, 1949]}: mean field model for hard needles in $\mathbb R^3$.
+ \item \href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]}: interacting dimers.
+ \item \href{http://dx.doi.org/10.1007/BF00535264}{[Bricmont, Kuroda, Lebowitz, 1984]}: hard needles in $\mathbb R^2$.
+ \item \href{http://dx.doi.org/10.1007/s10955-005-8085-8}{[Ioffe, Velenik, Zahradn\'\i k, 2006]}: hard rods in $\mathbb Z^2$ (variable length).
+ \item \href{http://dx.doi.org/10.1007/s00220-013-1767-1}{[Disertori, Giuliani, 2013]}: hard rods in $\mathbb Z^2$.
+\end{itemize}
+\vfill
+\eject
+
+\title{Heilmann-Lieb conjecture}
+\vfill
+\begin{itemize}
+ \item \href{http://dx.doi.org/10.1007/s10955-015-1421-8}{[Alberici, 2016]}: different fugacities for horizontal and vertical dimers.
+ \vfill
+ \item \href{http://dx.doi.org/10.1103/PhysRevB.89.035128}{[Papanikolaou, Charrier, Fradkin, 2014]}: numerics.
+\end{itemize}
+\vfill
+\eject
+
+\title{Heilmann-Lieb model}
+\begin{itemize}
+ \item Grand-canonical Gibbs measure:
+ $$
+ \left<A\right>_{\mathrm v}
+ :=
+ \lim_{\Lambda\to\mathbb Z^2}
+ \frac1{\Xi_{\Lambda,\mathrm v}(z)}
+ \sum_{\underline\delta\in\Omega_{\mathrm v}(\Lambda)}A(\underline\delta)z^{|\underline\delta|}\prod_{\delta\neq \delta'\in \underline\delta}e^{\frac12J\mathds 1_{\delta\sim\delta'}}
+ $$
+ \vskip-15pt
+ \begin{itemize}
+ \item $\Lambda$: finite box.
+ \item $\Omega_{\mathrm v}(\Lambda)$: non-overlapping dimer configurations satisfying the boundary condition.
+ \item $z\geqslant 0$: fugacity.
+ \item $J\geqslant 0$: interaction strength.
+ \item $\mathds 1_{\delta\sim\delta'}$ indicator that dimers are adjacent and aligned.
+ \end{itemize}
+\end{itemize}
+\vfill
+\eject
+
+\title{Theorem}
+For $1\ll z\ll J$, $\|(x,y)\|_{\mathrm{HL}}:=J|x|+e^{-\frac32J}z^{-\frac12}|y|$,
+\begin{itemize}
+ \item Given two vertical edges $e_{\mathrm v},f_{\mathrm v}$, $\left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v}$ is {\it independent} of $e_{\mathrm v}$ and
+ $$
+ \begin{array}{c}
+ \left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v}=\frac12(1+O(e^{-\frac12J}z^{-\frac12}))
+ \\[0.3cm]
+ \left<\mathds 1_{e_{\mathrm v}}\mathds 1_{f_{\mathrm v}}\right>_{\mathrm v}
+ -\left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v}
+ \left<\mathds 1_{f_{\mathrm v}}\right>_{\mathrm v}
+ =O(e^{-c\ \mathrm{dist}_{\mathrm{HL}}(e_{\mathrm v},f_{\mathrm v})})
+ \end{array}
+ $$
+ \vskip-5pt
+ \item Given two horizontal edges $e_{\mathrm h},f_{\mathrm h}$, $\left<\mathds 1_{e_{\mathrm h}}\right>_{\mathrm v}$ is {\it independent} of $e_{\mathrm h}$ and
+ $$
+ \begin{array}{c}
+ \left<\mathds 1_{e_{\mathrm h}}\right>_{\mathrm v}=O(e^{-3J})
+ \\[0.3cm]
+ \left<\mathds 1_{e_{\mathrm h}}\mathds 1_{f_{\mathrm v}}\right>_{\mathrm v}
+ -\left<\mathds 1_{e_{\mathrm h}}\right>_{\mathrm v}
+ \left<\mathds 1_{f_{\mathrm h}}\right>_{\mathrm v}
+ =O(e^{-3J-c\ \mathrm{dist}_{\mathrm{HL}}(e_{\mathrm v},f_{\mathrm v})})
+ \end{array}
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{1D system}
+\begin{itemize}
+ \item \href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]}: mostly vertical dimers.
+ \item {\it Only} vertical dimers: integrable.
+ \item Given two vertical edges $e_{\mathrm v},f_{\mathrm v}$, $\left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v}$ is {\it independent} of $e_{\mathrm v}$ and
+ $$
+ \begin{array}{c}
+ \left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v}=\frac12(1+O(e^{-\frac12J}z^{-\frac12}))
+ \\[0.3cm]
+ \left<\mathds 1_{e_{\mathrm v}}\mathds 1_{f_{\mathrm v}}\right>_{\mathrm v}
+ -\left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v}
+ \left<\mathds 1_{f_{\mathrm v}}\right>_{\mathrm v}
+ =O(e^{-c\ \mathrm{dist}_{\mathrm{1D}}(e_{\mathrm v},f_{\mathrm v})})
+ \end{array}
+ $$
+ with $\|(x,y)\|_{\mathrm{1D}}:=e^{-\frac32J}z^{-\frac12}|y|$.
+\end{itemize}
+\vfill
+\eject
+
+\title{Peierls argument}
+\vfill
+\hfil\includegraphics[width=5cm]{dimer_contour.pdf}
+\vfill
+
+\end{document}