Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Jauslin_EL_2018.tex')
-rw-r--r--Jauslin_EL_2018.tex335
1 files changed, 335 insertions, 0 deletions
diff --git a/Jauslin_EL_2018.tex b/Jauslin_EL_2018.tex
new file mode 100644
index 0000000..01a3a21
--- /dev/null
+++ b/Jauslin_EL_2018.tex
@@ -0,0 +1,335 @@
+\documentclass{ian-presentation}
+
+
+\usepackage[hidelinks]{hyperref}
+\usepackage{graphicx}
+\usepackage{xcolor}
+
+\definecolor {L67}{HTML}{4169E1}
+\definecolor{SML64}{HTML}{4B0082}
+\definecolor {TL71}{HTML}{DAA520}
+\definecolor {HL72}{HTML}{DC143C}
+\definecolor {HL79}{HTML}{32CD32}
+\definecolor {L89}{HTML}{00CCCC}
+
+\begin{document}
+\pagestyle{empty}
+\hbox{}\vfil
+\bf\Large
+\hfil Dimers, Spins and Loops\par
+\smallskip
+\large\hfil Transfer Matrices, the TL Algebra and Emerging Fermions\par
+\vfil
+\large
+\hfil Ian Jauslin
+\vfil
+\normalsize
+\hfil\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}
+\rm
+\eject
+
+\setcounter{page}1
+\pagestyle{plain}
+
+\title{Outline}
+\vfill
+\hfil\includegraphics[width=5cm]{plan.pdf}
+\hfil\parbox[b]{6.5cm}{
+ \begin{itemize}
+ {\color{L67}\item [Li67] Dimers}
+ {\color{SML64}\item [SML64] 2D Ising}
+ {\color{TL71}\item [TL71] Temperley-Lieb algebras}
+ {\color{HL72}\item [HL72] Monomers and Dimers}
+ {\color{HL79}\item [HL79] Interacting Dimers}
+ {\color{L89}\item [Li89] Hubbard model}
+ \end{itemize}
+}
+\vfill
+\eject
+
+\title{Dimers}
+\vfill
+\hfil\includegraphics[width=6cm]{graph.pdf}
+\vfill
+\eject
+
+\addtocounter{page}{-1}
+\title{Dimer covering}
+\vfill
+\hfil\includegraphics[width=6cm]{cover.pdf}
+\vfill
+\eject
+
+\addtocounter{page}{-1}
+\title{Monomer-Dimer configuration}
+\vfill
+\hfil\includegraphics[width=6cm]{mdcover.pdf}
+\vfill
+\eject
+
+\title{Counting dimer coverings}
+\begin{itemize}
+ \item On planar graphs:
+ \href{http://dx.doi.org/10.1063/1.1703953}{[Kasteleyn, 1963]},
+ \href{http://dx.doi.org/10.1080/14786436108243366}{[Temperley, Fisher, 1961]}: Pfaffian formula
+ $$Z\equiv\mathrm{number\ of\ coverings} = \mathrm{determinant}.$$
+ \item {\color{L67}\href{http://dx.doi.org/10.1063/1.1705163}{{\bf E.H. Lieb}, {\it Solution of the Dimer Problem by the Transfer Matrix Method}, Journal of Mathematical Physics, 1967}}: on $M\times N$ discrete torus:
+ $$\lim_{M,N\to\infty}\frac1{MN}\log Z=\frac1{2\pi}\int_0^\pi dq\ \log\left(\sin q+\sqrt{1+\sin^2q}\right).$$
+ \item Using a Transfer Matrix and Emergent Fermions.
+\end{itemize}
+\vfill
+\eject
+
+\title{2D Ising}
+\vskip-10pt
+\begin{itemize}
+ \item {\it Spin} on every $x\in\mathbb Z^2$. Random configuration with probability
+ $$\frac1{Z(T)}e^{\frac1T\sum_{\left<i,j\right>}\sigma_i\sigma_j}.$$
+ \vskip-10pt
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=4cm]{ising.pdf}
+\vfill
+\eject
+
+\title{2D Ising}
+\begin{itemize}
+ \item At $T\ll 1$, two phases:
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=4cm]{ising_blue.pdf}
+\hfil\includegraphics[width=4cm]{ising_red.pdf}
+\vfill
+\eject
+
+\title{2D Ising}
+\vfill
+\begin{itemize}
+ \item Free energy:
+ $$f(T)=-T\lim_{M,N\to\infty}\frac1{MN}\log Z(T).$$
+ \item Exact solution:
+ \href{http://dx.doi.org/10.1103/PhysRev.65.117}{[Onsager, 1944]}:
+ first example of a microscopic model with a phase transition.
+ \item {\color{SML64}\href{http://dx.doi.org/10.1103/RevModPhys.36.856}{{\bf T.D. Schultz, D.C. Mattis, E.H. Lieb}, {\it Two-Dimensional Ising Model as a Soluble Problem of Many Fermions}, Reviews of Modern Physics, 1964}}.
+\end{itemize}
+\vfill
+\eject
+
+\title{2D Ising - Transfer Matrix}
+\vfill
+\hfil\includegraphics[width=4cm]{transfer1.pdf}
+\vfill
+\eject
+
+\addtocounter{page}{-1}
+\title{2D Ising - Transfer Matrix}
+\vfill
+\hfil\includegraphics[width=4cm]{transfer2.pdf}
+\vfill
+\eject
+
+\title{2D Ising - Transfer Matrix}
+\begin{itemize}
+ \item Transfer matrix: $V$, is a $2^M\times 2^M$ real symmetric matrix, and
+ $$Z(T)=\mathrm{Tr}(V^N).$$
+ \item The free energy
+ $$f(T)=-T\lim_{N,M\to\infty}\frac1{NM}\log Z(T)=-\lim_{M\to\infty}\frac TM\log\lambda_M$$
+ where $\lambda_M$ is the {\it largest} eigenvalue of $V$.
+\end{itemize}
+\vfill
+\eject
+
+\title{2D Ising - Emergent Fermions}
+\begin{itemize}
+ \item To diagonalize $V$: turn spins into Fermions using a {\it Jordan-Wigner} transformation.
+ \item Fermions: particle excitations.
+ \item {\it Non-interacting} Fermions:
+ $$V=(2\sinh(2JT^{-1}))^{\frac M2}e^{-\sum_q\epsilon_q(c_q^\dagger c_q-\frac12)}.$$
+ \item Remark: in the {\it ice model} ({\it cf} Duminil-Copin), Fermions {\it interact}.
+ \item Remark: the Ising model with weak nearest neighbor interactions is mapped to a weakly interacting Fermion model \href{http://dx.doi.org/10.1063/1.4745910}{[Giuliani, Greenblatt, Mastropietro, 2012]}.
+\end{itemize}
+\vfill
+\eject
+
+\title{Temperley-Lieb algebras}
+\begin{itemize}
+ \vskip-12pt
+ \item {\color{TL71}\href{http://dx.doi.org/10.1098/rspa.1971.0067}{{\bf H.N.V. Temperley, E.H. Lieb}, {\it Relations between the `percolation' and `colouring' problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the `percolation' problem}, Proceedings of the Royal Society of London A, 1971}}.
+ \item Compute {\it Whitney} polynomial on a square lattice
+ $$W(x,y)=\sum_Gx^{l_G-s_G}y^{s_G}.$$
+ where $l_G$ is the number of lines and $s_G$ the number of cycles.
+ \item Related to counting the number of connected components in a random graph, and to the number of ways of coloring the $\mathbb Z^2$ lattice.
+ \item Transfer Matrix technique: difficult because the setting is non-Markovian.
+\end{itemize}
+\vfill
+\eject
+
+\title{Temperley-Lieb algebras}
+\begin{itemize}
+ \item In each row, keep track of who is connected to whom.
+ \item Graphical representation of the transfer matrix:
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=1cm]{tl1.pdf}
+\hfil\includegraphics[width=1cm]{tl2.pdf}
+\hfil\includegraphics[width=1cm]{tl3.pdf}
+\hfil\includegraphics[width=1cm]{tl4.pdf}
+\hfil\includegraphics[width=1cm]{tl5.pdf}
+\begin{itemize}
+ \item Algebra generated by
+\end{itemize}
+\hfil\includegraphics[width=1cm]{tl1.pdf}
+\hfil\includegraphics[width=1cm]{tl2.pdf}
+\hfil\includegraphics[width=1cm]{tl3.pdf}
+\begin{itemize}
+ \item Applications to knot theory, the Jones polynomial, braids, 2D Ising, quantum groups...
+\end{itemize}
+\vfill
+\eject
+
+\title{Counting dimer coverings}
+\begin{itemize}
+ \item {\color{L67}\href{http://dx.doi.org/10.1063/1.1705163}{{\bf E.H. Lieb}, {\it Solution of the Dimer Problem by the Transfer Matrix Method}, Journal of Mathematical Physics, 1967}}.
+ \item Similar approach to Schultz-Mattis-Lieb: Transfer Matrix/Fermions.
+ \item What if there are monomers?
+\end{itemize}
+\hfil\includegraphics[width=3cm]{cover.pdf}
+\hfil\includegraphics[width=3cm]{mdcover.pdf}
+\vfill
+\eject
+
+\title{Monomer-Dimer}
+\begin{itemize}
+ \vskip-10pt
+ \item {\color{HL72}\href{http://dx.doi.org/10.1007/BF01877590}{{\bf O.J. Heilmann, E.H. Lieb}, {\it Theory of monomer-dimer systems}, Communications in Mathematical Physics, 1972}}.
+ \item Random configuration of dimers: ($z$: {\it monomer fugacity})
+ $$\frac{z^{\#\mathrm{monomers}}}{\Xi_G(z)}.$$
+ \vskip-10pt
+ \item Free energy:
+ $$f(z):=-\lim_{\mathrm{Vol}\to\infty}\frac1{\mathrm{Vol}}\log(\Xi_G(z)).$$
+ \item There is a {\it phase transition} when $f$ is singular.
+ \item Roots of $\Xi_G(z)$: {\it Lee-Yang} zeros.
+\end{itemize}
+\vfill
+\eject
+
+\title{Monomer-Dimer}
+\begin{itemize}
+ \item Recurrence relation:
+ $$\Xi_G(z)=z\Xi_{G\setminus\{i\}}+\sum_{j:(i,j)\in G}\Xi_{G\setminus\{i,j\}}(z).$$
+ \item The Lee-Yang zeros lie in a bounded subset of the imaginary axis.
+ \item This result was recently used to solve the Kadison-Singer problem
+ \href{https://arxiv.org/abs/1408.4421}{[Marcus, Spielman, Srivastava, 2014]}.
+ \item No phase transitions in the monomer-dimer model!
+\end{itemize}
+\vfill
+\eject
+
+\title{Dimers as particles}
+\vfill
+\hfil\includegraphics[width=6cm]{dimers.pdf}
+\vfill
+\eject
+
+\title{Interacting dimers}
+\vfill
+\hfil\includegraphics[width=6cm]{interaction.pdf}
+\vfill
+\eject
+
+\title{Heilmann-Lieb model}
+\vfill
+\begin{itemize}
+ \item {\color{HL79}\href{http://dx.doi.org/10.1007/BF01009518}{{\bf O.J. Heilmann, E.H. Lieb}, {\it Lattice models for liquid crystals}, Journal of Statistical Physics, 1979}}.
+ \item Long range orientational order: dimers are either mostly vertical or mostly horizontal (if the interaction is strong enough).
+ \item There is a phase transition!
+ \item Argument uses {\it reflection positivity} and a {\it chessboard estimate}.
+\end{itemize}
+\vfill
+\eject
+
+\title{Hubbard model}
+\begin{itemize}
+ \item {\color{L89}\href{http://dx.doi.org/10.1103/PhysRevLett.62.1201}{{\bf E.H. Lieb}, {\it Two Theorems on the Hubbard Model}, Physical Review Letters, 1989}}.
+ \item Electrons on a graph, with a local interaction.
+ \item If the interaction is repulsive, the graph is bipartite, and the number of electrons is equal to the number of vertices, then the spin of the ground state is
+ $$S=\frac12||B|-|A||$$
+ where $|B|$ and $|A|$ are the numbers of vertices on the $B$- and $A$-subgraphs.
+ \item Uses reflection positivity in {\it spin space}.
+\end{itemize}
+
+\title{Lieb lattice}
+\vfill
+\hfil\includegraphics[width=5cm]{lieb_lattice.pdf}
+$$|B|=2|A|$$
+\vfill
+\eject
+
+\title{Heilmann-Lieb model}
+\vfill
+\hfil\includegraphics[width=6cm]{interaction.pdf}
+\vfill
+\eject
+
+\title{Liquid crystals}
+\vfill
+\hfil\includegraphics[width=6cm]{nematic.png}
+\vfill
+\eject
+
+\title{Liquid crystals}
+\vfill
+\begin{itemize}
+ \item Orientational order {\it and} positional disorder.
+ \item Heilmann-Lieb: orientational order.
+ \item Conjecture: positional disorder.
+ \item Previous results:
+ \begin{itemize}
+ \item \href{http://dx.doi.org/10.1007/BF00535264}{[Bricmont, Kuroda, Lebowitz, 1984]}: hard needles in $\mathbb R^2$ with a {\it finite} number of orientations.
+ \item \href{http://dx.doi.org/10.1007/s10955-005-8085-8}{[Ioffe, Velenik, Zahradn\'\i k, 2006]}: hard rods in $\mathbb Z^2$ (variable length).
+ \item \href{http://dx.doi.org/10.1007/s00220-013-1767-1}{[Disertori, Giuliani, 2013]}: hard rods in $\mathbb Z^2$.
+ \end{itemize}
+\end{itemize}
+
+\title{Nematic phase in the Heilmann-Lieb model}
+\vfill
+\begin{itemize}
+ \item Proof of positional disorder: \href{https://arxiv.org/abs/1709.05297}{[Jauslin, Lieb, 2017]} (uses Pirogov-Sinai theory).
+ \item Correlations between the positions of the dimers decay exponentially.
+ \item The rate of the decay is strongly anisotropic: in a vertical phase, the correlation length is very large in the vertical direction, and small in the horizontal.
+\end{itemize}
+\vfill
+\eject
+
+\title{Pirogov-Sinai theory}
+\vfill
+\hfil\includegraphics[width=6cm]{dimer_contour.pdf}
+\vfill
+\eject
+
+\title{Summary}
+\vfill
+\hfil\includegraphics[width=5cm]{plan.pdf}
+\hfil\parbox[b]{6.5cm}{
+ \begin{itemize}
+ {\color{L67}\item [Li67] Dimers}
+ {\color{SML64}\item [SML64] 2D Ising}
+ {\color{TL71}\item [TL71] Temperley-Lieb algebras}
+ {\color{HL72}\item [HL72] Monomers and Dimers}
+ {\color{HL79}\item [HL79] Interacting Dimers}
+ {\color{L89}\item [Li89] Hubbard model}
+ \end{itemize}
+}
+\vfill
+\eject
+
+\title{Macbeth - act V scene 8}
+\vfill
+\hfil[...] Before my body\par
+\medskip
+\hfil I throw my warlike shield. {\color{red}Lay on, Macduff},\par
+\medskip
+\hfil And damn'd be him that first cries, `Hold, enough!'\par
+
+
+\end{document}