Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Jauslin_Princeton_2017.tex')
-rw-r--r--Jauslin_Princeton_2017.tex327
1 files changed, 327 insertions, 0 deletions
diff --git a/Jauslin_Princeton_2017.tex b/Jauslin_Princeton_2017.tex
new file mode 100644
index 0000000..2218b6d
--- /dev/null
+++ b/Jauslin_Princeton_2017.tex
@@ -0,0 +1,327 @@
+\documentclass{ian-presentation}
+
+\usepackage[hidelinks]{hyperref}
+\usepackage{graphicx}
+\usepackage{color}
+\usepackage{amsfonts}
+\usepackage{amssymb}
+\usepackage{array}
+\usepackage{dsfont}
+
+\begin{document}
+\pagestyle{empty}
+\hbox{}\vfil
+\bf\Large
+\hfil Ground state construction\par
+\smallskip
+\hfil of Bilayer Graphene\par
+\vfil
+\large
+\hfil Ian Jauslin
+\normalsize
+\vfil
+\hfil\rm joint with {\bf Alessandro Giuliani}\par
+\vfil
+arXiv:{\tt \href{http://arxiv.org/abs/1507.06024}{1507.06024}}\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
+\eject
+
+\setcounter{page}1
+\pagestyle{plain}
+
+\title{Monolayer graphene}
+\begin{itemize}
+ \item 2D crystal of carbon atoms on a honeycomb lattice.
+\end{itemize}
+\vfill
+\hfil\includegraphics[height=140pt]{monolayer.pdf}\par
+\eject
+
+\title{Bilayer graphene}
+\begin{itemize}
+ \item 2 graphene layers in {\it AB} stacking.
+\end{itemize}
+\vfill
+\hfil\includegraphics[height=140pt]{bilayer.pdf}\par
+\eject
+
+\title{Hamiltonian}
+\begin{itemize}
+ \item Model for the electrons.
+ \item Hamiltonian:
+ $$
+ \mathcal H=\mathcal H_0+U\mathcal V
+ $$
+ \item $\mathcal H_0$: kinetic term: hoppings (tight-binding approximation).
+ \item $U\mathcal V$: interaction: weak, short-range (screened Coulomb).
+\end{itemize}
+\eject
+
+\title{Lattice structure}
+\begin{itemize}
+ \item Rhombic lattice $\Lambda\equiv\mathbb Z^2$, 4 atoms per site.
+\end{itemize}
+\vfill
+\hfil\includegraphics[height=140pt]{bilayer_cell.pdf}\par
+\eject
+
+\title{Hoppings}
+\vfill
+\hfil\includegraphics[height=140pt]{bilayer.pdf}
+\vfill
+\eject
+
+\addtocounter{page}{-1}
+\title{Hoppings}
+\vfill
+\hfil\includegraphics[height=140pt]{hoppings_0.pdf}
+\vfill
+\eject
+
+\addtocounter{page}{-1}
+\title{Hoppings}
+\vfill
+\hfil\includegraphics[height=140pt]{hoppings_1.pdf}
+\vfill
+\eject
+
+\addtocounter{page}{-1}
+\title{Hoppings}
+\vfill
+\hfil\includegraphics[height=140pt]{hoppings_3.pdf} \vfill
+\eject
+
+\addtocounter{page}{-1}
+\title{Hoppings}
+\vfill
+\hfil\includegraphics[height=140pt]{hoppings.pdf}
+\vfill
+\eject
+
+\title{Non-interacting Hamiltonian}
+$$
+ \begin{array}{r@{\ }>{\displaystyle}l}
+ \mathcal H_0:=&
+ -\gamma_0\sum_{\displaystyle\mathop{\scriptstyle x\in\Lambda}_{j=1,2,3}}\left(
+ {\color{red}a_x^\dagger b_{x+\delta_j}}
+ +
+ {\color{red}b_{x+\delta_j}^\dagger a_x}
+ +
+ {\color{red}\tilde b_x^\dagger \tilde a_{x-\delta_j}}
+ +
+ {\color{red}\tilde a_{x-\delta_j}^\dagger\tilde b_x}
+ \right)
+ \\[1cm]
+ &-\gamma_1\sum_{ x\in\Lambda}\left(
+ {\color{green}a_x^\dagger \tilde b_x}
+ +
+ {\color{green}\tilde b_x^\dagger a_x}
+ \right)
+ \\[0.75cm]
+ &-\gamma_3\sum_{\displaystyle\mathop{\scriptstyle x\in\Lambda}_{j=1,2,3}}\left(
+ {\color{blue}\tilde a_{x-\delta_1}^\dagger b_{x-\delta_1-\delta_j}}
+ +
+ {\color{blue}b_{x-\delta_1-\delta_j}^\dagger\tilde a_{x-\delta_1}}
+ \right)
+ \end{array}
+$$
+\vfill
+\eject
+
+\title{Non-interacting Hamiltonian}
+\vfill
+\begin{itemize}
+ \item Hopping strengths:
+ $$
+ \gamma_0=1,\quad
+ \gamma_1=\epsilon,\quad
+ \gamma_3=0.33\times\epsilon
+ $$
+ \item Experimental value $\epsilon\approx0.1$, here, $\epsilon\ll1$.
+\end{itemize}
+\vfill
+\eject
+
+\title{Interaction}
+$$
+ \mathcal V=\sum_{x,y}v(|x-y|)\left(n_x-\frac12\right)\left(n_y-\frac12\right)
+$$
+\begin{itemize}
+ \item $\displaystyle\sum_{x,y}$: sum over pairs of atoms
+ \item $n_x\equiv\alpha_x^\dagger\alpha_x$
+ \item $v(|x-y|)\leqslant e^{-c|x-y|}$, $c>0$
+ \item $-\frac12$: {\it half-filling}.
+\end{itemize}
+\eject
+
+\title{Theorem}
+$\exists U_0,\epsilon_0>0$, independent, such that, for $\epsilon<\epsilon_0$, $|U|<U_0$,
+\begin{itemize}
+ \item the free energy
+ $$
+ f:=-\frac1{|\Lambda|\beta}\log\mathrm{Tr}(e^{-\beta \mathcal H})
+ $$
+ is analytic in $U$, uniformly in $\beta$ and $|\Lambda|$,
+ \item the two-point Schwinger function: for $\alpha,\alpha'\in\{a,b,\tilde a,\tilde b\}$,
+ $$
+ s(x-y):=\frac{\mathrm{Tr}(e^{-\beta \mathcal H}\alpha'_x\alpha_y^\dagger)}{\mathrm{Tr}(e^{-\beta \mathcal H})}
+ $$
+ is analytic in $U$, uniformly in $\beta$ and $|\Lambda|$.
+\end{itemize}
+\vfill
+\eject
+
+\title{Free model}
+\vskip-10pt $$
+ \mathcal H_0=\sum_{k\in\hat\Lambda}
+ \left(\begin{array}c
+ \hat a_k^\dagger\\
+ \hat{\tilde b}_k^\dagger\\
+ \hat{\tilde a}_k^\dagger\\
+ \hat b_k^\dagger
+ \end{array}\right)^T
+ \hat H_0(k)
+ \left(\begin{array}c
+ \hat a_k\\
+ \hat{\tilde b}_k\\
+ \hat{\tilde a}_k\\
+ \hat b_k
+ \end{array}\right)
+$$
+\vfill
+$$
+ \kern-10pt
+ \hat H_0(k):=
+ -\left(\begin{array}{*{4}{c}}
+ 0&\gamma_1&0&\gamma_0\Omega^*(k)\\
+ \gamma_1&0&\gamma_0\Omega(k)&0\\
+ 0&\gamma_0\Omega^*(k)&0&\gamma_3\Omega(k)e^{3ik_x}\\
+ \gamma_0\Omega(k)&0&\gamma_3\Omega(k)e^{-3ik_x}
+ \end{array}\right)
+$$
+\vfill
+$$
+ \Omega(k):=1+2e^{-\frac32ik_x}\cos({\textstyle\frac{\sqrt3}2}k_y)
+$$
+\eject
+
+\title{Free model}
+\begin{itemize}
+ \item Eigenvalues of $\hat H_0(k)$:
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=\textwidth]{bands.pdf}\par
+\vfill
+\eject
+
+\title{Perturbation theory}
+\begin{itemize}
+ \item Trotter formula:
+ $$
+ \kern-10pt
+ \frac{\mathrm{Tr}(e^{-\beta(\mathcal H_0+U\mathcal V)})}{\mathrm{Tr}(e^{-\beta\mathcal H_0})}=
+ \left<\mathbb T \exp\left(-U\int_0^\beta\kern-5pt dt\ \mathcal V(t)\right)\right>_0
+ $$
+ \item ``Imaginary time'':
+ $$
+ \mathcal V(t):=e^{t\mathcal H_0}\mathcal Ve^{-t\mathcal H_0}
+ $$
+ \vskip-2pt
+ \item ``Non-interacting Gibbs measure'':
+ $$
+ \left<A\right>_0:=\frac{\mathrm{Tr}(e^{-\beta\mathcal H_0}A)}{\mathrm{Tr}(e^{-\beta\mathcal H_0})}
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Perturbation theory}
+\begin{itemize}
+ \item Matsubara frequency: for $\alpha\in\{a,b,\tilde a,\tilde b\}$,
+ $$
+ \hat\alpha_{k_0,k}:=\int dt\ e^{ik_0t}e^{t\mathcal H_0}\hat\alpha_ke^{-t\mathcal H_0}.
+ $$
+
+ \item Non-interacting Gibbs measure: ``Gaussian'', and singular: for $\alpha,\alpha'\in\{a,b,\tilde a,\tilde b\}$,
+ $$
+ \hat s^{(0)}_{\alpha',\alpha}(k_0,k):=\left<\hat\alpha'_{k_0,k}\hat\alpha_{k_0,k}^\dagger\right>_0=(-ik_0\mathds 1+\hat H_0(k))^{-1}_{\alpha',\alpha}
+ $$
+\end{itemize}
+\vfill
+\eject
+
+\title{Scaling}
+\begin{itemize}
+ \item Eigenvalues of $\hat H_0(k)$:
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=\textwidth]{bands.pdf}\par
+\vfill
+\eject
+
+\addtocounter{page}{-1}
+\title{Scaling}
+\begin{itemize}
+ \item First regime: $|k|\gg\epsilon$:
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=240pt]{bands_first.pdf}\par
+$$
+ \hat s^{(0)}(k_0,k)\sim(|k_0|+|k|)^{-1}
+$$
+\vfill
+\eject
+
+\addtocounter{page}{-1}
+\title{Scaling}
+\begin{itemize}
+ \item Second regime: $\epsilon^2\ll|k|\ll\epsilon$:
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=240pt]{bands_second.pdf}\par
+$$
+ \hat s^{(0)}(k_0,k)\sim\left(|k_0|+\frac{|k|^2}\epsilon\right)^{-1}
+$$
+\vfill
+\eject
+
+\addtocounter{page}{-1}
+\title{Scaling}
+\begin{itemize}
+ \item Third regime: $|k|\ll\epsilon^2$:
+\end{itemize}
+\vfill
+\hfil\includegraphics[height=100pt]{bands_third.pdf}\par
+$$
+ \hat s^{(0)}(k_0,k)\sim(|k_0|+\epsilon|k|)^{-1}
+$$
+\vfill
+\eject
+
+\title{Renormalization group}
+\begin{itemize}
+ \item Scale decomposition: scale $h\leqslant 0$:
+ $$
+ \hat s^{(0)}(k_0,k)\sim 2^{-h}
+ $$
+
+ \item Scale by scale integration:
+ $$
+ \left<A\right>_0=\left<\cdots\left<\left<A\right>_{0,0}\right>_{0,-1}\cdots\right>_{0,h}\cdots
+ $$
+
+ \item Effective potential: $\mathcal V_h(t)$:
+ $$
+ \kern-10pt
+ \left<\mathbb T\exp\left(-U\int dt\ \mathcal V_h(t)\right)\right>_{0,h}
+ ``="\ \mathbb T\exp\left(-U\int dt\ \mathcal V_{h-1}(t)\right)
+ $$
+\end{itemize}
+\vfill
+\eject
+
+
+\title{Renormalization group flow}
+\vfill
+\includegraphics[width=250pt]{flow.pdf}
+
+\end{document}