Ian Jauslin
summaryrefslogtreecommitdiff
blob: 417100a783541bc6f31d70e709dce923a198ebcc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
\documentclass{ian-presentation}

\usepackage[hidelinks]{hyperref}
\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{dsfont}

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf\Large
\hfil Crystalline ordering\par
\smallskip
\hfil in hard-core lattice particle systems\par
\vfil
\large
\hfil Ian Jauslin
\normalsize
\vfil
\hfil\rm joint with {\bf Joel L. Lebowitz}\par
\vfil
arXiv:{\tt \href{http://arxiv.org/abs/1705.02032}{1705.02032}}\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
\eject

\setcounter{page}1
\pagestyle{plain}

\title{Non-sliding HCLP}
\begin{itemize}
  \item Lattice in $d\geqslant 2$ dimensions.
  \item Identical particles with pair hard-core interaction.
  \item Finite number of perfect packings, which are periodic, and related to each other by isometries.
  \item Non-sliding (defects are full of holes).
\end{itemize}
\eject

\title{Lattice}
\begin{itemize}
  \item Lattice $\Lambda_\infty$ of dimension $d\geqslant 2$
\end{itemize}
\vfill
\hfil\includegraphics[width=4.5cm]{grid.pdf}
\vfill
\eject

\title{Particles}
\begin{itemize}
  \item Identical particles: shape $\omega\subset\mathbb R^d$
\end{itemize}
\vfill
\hfil\includegraphics[width=4.5cm]{cross_example.pdf}
\vfill
\eject

\title{Perfect packings}
\begin{itemize}
  \item Perfect packing: $\forall x\in\Lambda_\infty$, $\exists! y$ such that $x\in\omega+y$
\end{itemize}
\vfill
\hfil\includegraphics[width=4cm]{cross_packing_r.pdf}
\hfil\includegraphics[width=4cm]{cross_packing_l.pdf}
\vfill
\eject

\title{Perfect packings}
\begin{itemize}
  \item Example with infinitely many perfect packings: $2\times2$ squares
\end{itemize}
\vfill
\hfil\includegraphics[width=3cm]{square_packing.pdf}
\hfil\includegraphics[width=3cm]{square_packing_slide.pdf}
\vfill
\eject

\title{Non-sliding condition}
\begin{itemize}
  \item Defects have an amount of empty space that is proportional to their volume.
  \item For every {\it connected} particle configuration $X$ that {\it cannot} be completed to a perfect packing, and for every particle configuration $Y\supset X$, at least one of the sites {\it neighboring} $X$ is empty.
\end{itemize}
\eject

\title{Non-sliding condition}
\begin{itemize}
  \item Example: the red area cannot be entirely covered.
\end{itemize}
\vfill
\hfil\includegraphics[width=2cm]{cross_sliding1.pdf}
\hfil\includegraphics[width=2.4cm]{cross_sliding2.pdf}
\vfill
\eject

\title{Non-sliding condition}
\begin{itemize}
  \item Counter-example: $2\times 2$ squares.
\end{itemize}
\vfill
\hfil\includegraphics[width=2.5cm]{square_sliding.pdf}
\hfil\includegraphics[width=2.5cm]{square_sliding_contra.pdf}
\vfill
\eject

\title{Examples}
\begin{itemize}
  \item (thick) crosses, diamonds, hexagons...
\end{itemize}
\medskip
\hfil\includegraphics[height=1.5cm]{cross.pdf}
\hfil\includegraphics[height=1.5cm]{cross3.pdf}
\hfil\includegraphics[height=1.5cm]{diamond.pdf}
\hfil\includegraphics[height=1.5cm]{hexagon.pdf}
\begin{itemize}
  \item Conjecture: $k$-nearest neighbor exclusion on $\mathbb Z^2$ with
  $$
    k\in\{1,3,6,7,8,9,12,13,\cdots\}.
  $$
\end{itemize}
\eject

\title{Partition function}
$$
  \Xi^{(\nu)}_\Lambda(z)=
  \sum_{X\subset\Lambda}
  z^{|X|}\prod_{x\neq x'\in X}\phi(x,x')
$$
\begin{itemize}
  \item $\Lambda\subset\Lambda_\infty$ is bounded.
  \item $z$: {\it fugacity}, $z=e^{\beta\mu}$.
  \item $\phi$: hard-core repulsion.
  \item $|X|\leqslant N_{\mathrm{max}}$, maximal density: $\rho_m:=\frac{N_{\mathrm{max}}}{|\Lambda|}$.
  \item Boundary condition: $\Lambda_\infty\setminus\Lambda$ is covered by a perfect covering, indexed by $\nu\in\{1,\cdots,\tau\}$.
\end{itemize}
\vfill
\eject

\title{Thermodynamical observables}
\begin{itemize}
  \item Pressure:
  $$
    p(z):=\lim_{\Lambda\to\Lambda_\infty}\frac1{|\Lambda|}\log\Xi_\Lambda^{(\nu)}(z)
  $$
  \item Correlation functions: for $\underline x\equiv\{x_1,\cdots,x_n\}\subset\Lambda_\infty$,
  $$
    \rho_n^{(\nu)}(\underline x)
    :=\lim_{\Lambda\to\Lambda_\infty}
    \frac1{\Xi_\Lambda^{(\nu)}(z)}
    \sum_{\displaystyle\mathop{\scriptstyle X\subset\Lambda}_{X\supset\underline x}}
    z^{|X|}\prod_{x\neq x'\in X}\phi(x,x')
  $$
\end{itemize}
\eject

\title{Result}
\begin{itemize}
  \item High fugacity regime: $y\equiv z^{-1}\ll 1$.
  \item {\bf Analyticity}: $p(z)-\rho_m\log z$ and $\rho_n^{(\nu)}(\underline x)$ are {\it analytic} functions of $y$ in a disk in the complex $y$-plane centered at $0$.
  \item {\bf Crystallization}: If $x$ is compatible with the $\nu$-th perfect packing, then
  $$
    \rho_1^{(\nu)}(x)=1+o(1)
  $$
  and if not, then
  $$
    \rho_1^{(\nu)}(x)=o(1)
  $$
\end{itemize}
\eject

\title{Low-fugacity expansion}
\begin{itemize}
  \item Formally,
  $$
    \frac1{|\Lambda|}\log\Xi_\Lambda^{(\nu)}(z)
    =
    \sum_{k=1}^\infty b_k(\Lambda)z^k
  $$
  where, if $Z_\Lambda(k_i)$ denotes the number of configurations with $k_i$ particles, then
  $$
    b_k(\Lambda):=\frac1{|\Lambda|}
    \sum_{j=1}^k\frac{(-1)^{j+1}}j
    \sum_{\displaystyle\mathop{\scriptstyle k_1,\cdots,k_j\geqslant 1}_{k_1+\cdots+k_j=k}}Z_\Lambda(k_1)\cdots Z_\Lambda(k_j)
  $$
\end{itemize}
\eject

\title{Low-fugacity expansion}
\begin{itemize}
  \item Second term:
  $$
    b_2(\Lambda)=\frac1{|\Lambda|}\left(Z_\Lambda(2)-\frac12Z_\Lambda^2(1)\right)
  $$
  \item $\frac12 Z_\Lambda^2(1)$: counts non-interacting particle configurations.
  \item $Z_\Lambda(2)$: counts interacting particle configurations.
  \item The terms of order $|\Lambda|^2$ cancel out!
\end{itemize}
\eject

\title{Low-fugacity expansion}
\begin{itemize}
  \item \href{http://dx.doi.org/10.1017/S0305004100011191}{[Ursell, 1927]}, \href{http://dx.doi.org/10.1063/1.1749933}{[Mayer, 1937]}: $b_k(\Lambda)\to b_k$.
  \item \href{http://dx.doi.org/10.1016/0031-9163(62)90198-1}{[Groeneveld, 1962]}, \href{http://dx.doi.org/10.1016/0003-4916(63)90336-1}{[Ruelle, 1963]}, \href{http://dx.doi.org/10.1063/1.1703906}{[Penrose, 1963]}: 
  $$
    p(z)=\sum_{k=1}^\infty b_kz^k
  $$
  which has a positive radius of convergence.
\end{itemize}
\eject

\title{High-fugacity expansion}
\begin{itemize}
  \item Inverse fugacity $y\equiv z^{-1}$:
  $$
    \Xi^{(\nu)}_\Lambda(z)=
    z^{N_{\mathrm{max}}}
    \sum_{X\subset\Lambda}
    y^{N_{\mathrm{max}}-|X|}\prod_{x\neq x'\in X}\phi(x,x')
  $$
\end{itemize}
\eject

\title{High-fugacity expansion}
\begin{itemize}
  \item Formally,
  $$
    \frac1{|\Lambda|}\log\Xi_\Lambda^{(\nu)}(z)
    =
    \rho_m\log z
    +
    \sum_{k=1}^\infty c_k(\Lambda)y^k
    +
    o(1)
  $$
  where, if $Q_\Lambda(k_i)$ denotes the number of configurations with $N_{\mathrm{max}}-k_i$ particles, then
  $$
    c_k(\Lambda):=\frac1{|\Lambda|}
    \sum_{j=1}^k\frac{(-1)^{j+1}}{j\tau^j}
    \sum_{\displaystyle\mathop{\scriptstyle k_1,\cdots,k_j\geqslant 1}_{k_1+\cdots+k_j=k}}Q_\Lambda(k_1)\cdots Q_\Lambda(k_j)
  $$
\end{itemize}
\eject

\title{High-fugacity expansion}
\begin{itemize}
  \item \href{http://dx.doi.org/10.1063/1.1697217}{[Gaunt, Fisher, 1965]}: diamonds: $c_k(\Lambda)\to c_k$ for $k\leqslant 9$.
  \item \href{http://dx.doi.org/10.1098/rsta.1988.0077}{[Joyce, 1988]}: hexagons (integrable, \href{http://dx.doi.org/10.1088/0305-4470/13/3/007}{[Baxter, 1980]}).
  \item \href{http://dx.doi.org/10.1209/epl/i2005-10166-3}{[Eisenberg, Baram, 2005]}: crosses: $c_k(\Lambda)\to c_k$ for $k\leqslant 6$.
  \item Cannot be done {\it systematically}: there exist counter-examples: e.g. nearest neighbor exclusion in 1 dimension:
  $$
    c_2(\Lambda)=-\frac1{192}|\Lambda|(|\Lambda|^2+2)
  $$
\end{itemize}
\eject

\title{Holes interact}
\begin{itemize}
  \item Total volume of holes: $\in\rho_m^{-1}\mathbb N$.
\end{itemize}
\vfill
\hfil\includegraphics[height=4.5cm]{hole_example_cross.pdf}
\hfil\includegraphics[height=4.5cm]{hole_example_square.pdf}
\vfill
\eject

\title{Non-sliding condition}
\begin{itemize}
  \item Distinct defects are decorrelated.
\end{itemize}
\vfill
\hfil\includegraphics[height=5cm]{hole_example_cross_decorrelated.pdf}
\vfill
\eject

\title{Gaunt-Fisher configurations}
\begin{itemize}
  \item Group together empty space and neighboring particles.
\end{itemize}
\vfill
\hfil\includegraphics[width=2.5cm]{gaunt_fisher2.pdf}
\hfil\includegraphics[width=4cm]{gaunt_fisher3.pdf}
\vfill
\eject

\title{Defect model}
\vskip-5pt
\begin{itemize}
  \item Map particle system to a model of defects:
  $$
    \Xi_\Lambda^{(\nu)}(z)=z^{\rho_m|\Lambda|}\sum_{\underline\gamma\subset\mathfrak C_\nu(\Lambda)}
    \left(\prod_{\gamma\neq\gamma'\in\underline\gamma}\Phi(\gamma,\gamma')\right)
    \prod_{\gamma\in\underline\gamma}\zeta_\nu^{(z)}(\gamma)
  $$
  \begin{itemize}
    \item $\Phi$: hard-core repulsion of defects.
    \item $\zeta_\nu^{(z)}(\gamma)$: activity of defect.
  \end{itemize}
  \item The activity of a defect is exponentially small: $\exists\epsilon\ll 1$
  $$
    \zeta_\nu^{(z)}(\gamma)<\epsilon^{|\gamma|}
  $$
  \vskip-5pt
  \item Low-fugacity expansion for defects.
\end{itemize}
\eject

\title{Crystallization}
\vfill
\begin{itemize}
  \item Peierls argument: in order to have a particle at $x$ that is not compatible with the $\nu$-th perfect packing, it must be part of or surrounded by a defect.
  \vfill
  \item Note: a naive Peierls argument requires the partition function to be independent from the boundary condition. This is not necessarily the case here, and we need elements from Pirogov-Sinai theory.
\end{itemize}


\end{document}