Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'GLaMP_2017.tex')
-rw-r--r--GLaMP_2017.tex312
1 files changed, 312 insertions, 0 deletions
diff --git a/GLaMP_2017.tex b/GLaMP_2017.tex
new file mode 100644
index 0000000..417100a
--- /dev/null
+++ b/GLaMP_2017.tex
@@ -0,0 +1,312 @@
+\documentclass{ian-presentation}
+
+\usepackage[hidelinks]{hyperref}
+\usepackage{graphicx}
+\usepackage{amssymb}
+\usepackage{dsfont}
+
+\begin{document}
+\pagestyle{empty}
+\hbox{}\vfil
+\bf\Large
+\hfil Crystalline ordering\par
+\smallskip
+\hfil in hard-core lattice particle systems\par
+\vfil
+\large
+\hfil Ian Jauslin
+\normalsize
+\vfil
+\hfil\rm joint with {\bf Joel L. Lebowitz}\par
+\vfil
+arXiv:{\tt \href{http://arxiv.org/abs/1705.02032}{1705.02032}}\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
+\eject
+
+\setcounter{page}1
+\pagestyle{plain}
+
+\title{Non-sliding HCLP}
+\begin{itemize}
+ \item Lattice in $d\geqslant 2$ dimensions.
+ \item Identical particles with pair hard-core interaction.
+ \item Finite number of perfect packings, which are periodic, and related to each other by isometries.
+ \item Non-sliding (defects are full of holes).
+\end{itemize}
+\eject
+
+\title{Lattice}
+\begin{itemize}
+ \item Lattice $\Lambda_\infty$ of dimension $d\geqslant 2$
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=4.5cm]{grid.pdf}
+\vfill
+\eject
+
+\title{Particles}
+\begin{itemize}
+ \item Identical particles: shape $\omega\subset\mathbb R^d$
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=4.5cm]{cross_example.pdf}
+\vfill
+\eject
+
+\title{Perfect packings}
+\begin{itemize}
+ \item Perfect packing: $\forall x\in\Lambda_\infty$, $\exists! y$ such that $x\in\omega+y$
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=4cm]{cross_packing_r.pdf}
+\hfil\includegraphics[width=4cm]{cross_packing_l.pdf}
+\vfill
+\eject
+
+\title{Perfect packings}
+\begin{itemize}
+ \item Example with infinitely many perfect packings: $2\times2$ squares
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=3cm]{square_packing.pdf}
+\hfil\includegraphics[width=3cm]{square_packing_slide.pdf}
+\vfill
+\eject
+
+\title{Non-sliding condition}
+\begin{itemize}
+ \item Defects have an amount of empty space that is proportional to their volume.
+ \item For every {\it connected} particle configuration $X$ that {\it cannot} be completed to a perfect packing, and for every particle configuration $Y\supset X$, at least one of the sites {\it neighboring} $X$ is empty.
+\end{itemize}
+\eject
+
+\title{Non-sliding condition}
+\begin{itemize}
+ \item Example: the red area cannot be entirely covered.
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=2cm]{cross_sliding1.pdf}
+\hfil\includegraphics[width=2.4cm]{cross_sliding2.pdf}
+\vfill
+\eject
+
+\title{Non-sliding condition}
+\begin{itemize}
+ \item Counter-example: $2\times 2$ squares.
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=2.5cm]{square_sliding.pdf}
+\hfil\includegraphics[width=2.5cm]{square_sliding_contra.pdf}
+\vfill
+\eject
+
+\title{Examples}
+\begin{itemize}
+ \item (thick) crosses, diamonds, hexagons...
+\end{itemize}
+\medskip
+\hfil\includegraphics[height=1.5cm]{cross.pdf}
+\hfil\includegraphics[height=1.5cm]{cross3.pdf}
+\hfil\includegraphics[height=1.5cm]{diamond.pdf}
+\hfil\includegraphics[height=1.5cm]{hexagon.pdf}
+\begin{itemize}
+ \item Conjecture: $k$-nearest neighbor exclusion on $\mathbb Z^2$ with
+ $$
+ k\in\{1,3,6,7,8,9,12,13,\cdots\}.
+ $$
+\end{itemize}
+\eject
+
+\title{Partition function}
+$$
+ \Xi^{(\nu)}_\Lambda(z)=
+ \sum_{X\subset\Lambda}
+ z^{|X|}\prod_{x\neq x'\in X}\phi(x,x')
+$$
+\begin{itemize}
+ \item $\Lambda\subset\Lambda_\infty$ is bounded.
+ \item $z$: {\it fugacity}, $z=e^{\beta\mu}$.
+ \item $\phi$: hard-core repulsion.
+ \item $|X|\leqslant N_{\mathrm{max}}$, maximal density: $\rho_m:=\frac{N_{\mathrm{max}}}{|\Lambda|}$.
+ \item Boundary condition: $\Lambda_\infty\setminus\Lambda$ is covered by a perfect covering, indexed by $\nu\in\{1,\cdots,\tau\}$.
+\end{itemize}
+\vfill
+\eject
+
+\title{Thermodynamical observables}
+\begin{itemize}
+ \item Pressure:
+ $$
+ p(z):=\lim_{\Lambda\to\Lambda_\infty}\frac1{|\Lambda|}\log\Xi_\Lambda^{(\nu)}(z)
+ $$
+ \item Correlation functions: for $\underline x\equiv\{x_1,\cdots,x_n\}\subset\Lambda_\infty$,
+ $$
+ \rho_n^{(\nu)}(\underline x)
+ :=\lim_{\Lambda\to\Lambda_\infty}
+ \frac1{\Xi_\Lambda^{(\nu)}(z)}
+ \sum_{\displaystyle\mathop{\scriptstyle X\subset\Lambda}_{X\supset\underline x}}
+ z^{|X|}\prod_{x\neq x'\in X}\phi(x,x')
+ $$
+\end{itemize}
+\eject
+
+\title{Result}
+\begin{itemize}
+ \item High fugacity regime: $y\equiv z^{-1}\ll 1$.
+ \item {\bf Analyticity}: $p(z)-\rho_m\log z$ and $\rho_n^{(\nu)}(\underline x)$ are {\it analytic} functions of $y$ in a disk in the complex $y$-plane centered at $0$.
+ \item {\bf Crystallization}: If $x$ is compatible with the $\nu$-th perfect packing, then
+ $$
+ \rho_1^{(\nu)}(x)=1+o(1)
+ $$
+ and if not, then
+ $$
+ \rho_1^{(\nu)}(x)=o(1)
+ $$
+\end{itemize}
+\eject
+
+\title{Low-fugacity expansion}
+\begin{itemize}
+ \item Formally,
+ $$
+ \frac1{|\Lambda|}\log\Xi_\Lambda^{(\nu)}(z)
+ =
+ \sum_{k=1}^\infty b_k(\Lambda)z^k
+ $$
+ where, if $Z_\Lambda(k_i)$ denotes the number of configurations with $k_i$ particles, then
+ $$
+ b_k(\Lambda):=\frac1{|\Lambda|}
+ \sum_{j=1}^k\frac{(-1)^{j+1}}j
+ \sum_{\displaystyle\mathop{\scriptstyle k_1,\cdots,k_j\geqslant 1}_{k_1+\cdots+k_j=k}}Z_\Lambda(k_1)\cdots Z_\Lambda(k_j)
+ $$
+\end{itemize}
+\eject
+
+\title{Low-fugacity expansion}
+\begin{itemize}
+ \item Second term:
+ $$
+ b_2(\Lambda)=\frac1{|\Lambda|}\left(Z_\Lambda(2)-\frac12Z_\Lambda^2(1)\right)
+ $$
+ \item $\frac12 Z_\Lambda^2(1)$: counts non-interacting particle configurations.
+ \item $Z_\Lambda(2)$: counts interacting particle configurations.
+ \item The terms of order $|\Lambda|^2$ cancel out!
+\end{itemize}
+\eject
+
+\title{Low-fugacity expansion}
+\begin{itemize}
+ \item \href{http://dx.doi.org/10.1017/S0305004100011191}{[Ursell, 1927]}, \href{http://dx.doi.org/10.1063/1.1749933}{[Mayer, 1937]}: $b_k(\Lambda)\to b_k$.
+ \item \href{http://dx.doi.org/10.1016/0031-9163(62)90198-1}{[Groeneveld, 1962]}, \href{http://dx.doi.org/10.1016/0003-4916(63)90336-1}{[Ruelle, 1963]}, \href{http://dx.doi.org/10.1063/1.1703906}{[Penrose, 1963]}:
+ $$
+ p(z)=\sum_{k=1}^\infty b_kz^k
+ $$
+ which has a positive radius of convergence.
+\end{itemize}
+\eject
+
+\title{High-fugacity expansion}
+\begin{itemize}
+ \item Inverse fugacity $y\equiv z^{-1}$:
+ $$
+ \Xi^{(\nu)}_\Lambda(z)=
+ z^{N_{\mathrm{max}}}
+ \sum_{X\subset\Lambda}
+ y^{N_{\mathrm{max}}-|X|}\prod_{x\neq x'\in X}\phi(x,x')
+ $$
+\end{itemize}
+\eject
+
+\title{High-fugacity expansion}
+\begin{itemize}
+ \item Formally,
+ $$
+ \frac1{|\Lambda|}\log\Xi_\Lambda^{(\nu)}(z)
+ =
+ \rho_m\log z
+ +
+ \sum_{k=1}^\infty c_k(\Lambda)y^k
+ +
+ o(1)
+ $$
+ where, if $Q_\Lambda(k_i)$ denotes the number of configurations with $N_{\mathrm{max}}-k_i$ particles, then
+ $$
+ c_k(\Lambda):=\frac1{|\Lambda|}
+ \sum_{j=1}^k\frac{(-1)^{j+1}}{j\tau^j}
+ \sum_{\displaystyle\mathop{\scriptstyle k_1,\cdots,k_j\geqslant 1}_{k_1+\cdots+k_j=k}}Q_\Lambda(k_1)\cdots Q_\Lambda(k_j)
+ $$
+\end{itemize}
+\eject
+
+\title{High-fugacity expansion}
+\begin{itemize}
+ \item \href{http://dx.doi.org/10.1063/1.1697217}{[Gaunt, Fisher, 1965]}: diamonds: $c_k(\Lambda)\to c_k$ for $k\leqslant 9$.
+ \item \href{http://dx.doi.org/10.1098/rsta.1988.0077}{[Joyce, 1988]}: hexagons (integrable, \href{http://dx.doi.org/10.1088/0305-4470/13/3/007}{[Baxter, 1980]}).
+ \item \href{http://dx.doi.org/10.1209/epl/i2005-10166-3}{[Eisenberg, Baram, 2005]}: crosses: $c_k(\Lambda)\to c_k$ for $k\leqslant 6$.
+ \item Cannot be done {\it systematically}: there exist counter-examples: e.g. nearest neighbor exclusion in 1 dimension:
+ $$
+ c_2(\Lambda)=-\frac1{192}|\Lambda|(|\Lambda|^2+2)
+ $$
+\end{itemize}
+\eject
+
+\title{Holes interact}
+\begin{itemize}
+ \item Total volume of holes: $\in\rho_m^{-1}\mathbb N$.
+\end{itemize}
+\vfill
+\hfil\includegraphics[height=4.5cm]{hole_example_cross.pdf}
+\hfil\includegraphics[height=4.5cm]{hole_example_square.pdf}
+\vfill
+\eject
+
+\title{Non-sliding condition}
+\begin{itemize}
+ \item Distinct defects are decorrelated.
+\end{itemize}
+\vfill
+\hfil\includegraphics[height=5cm]{hole_example_cross_decorrelated.pdf}
+\vfill
+\eject
+
+\title{Gaunt-Fisher configurations}
+\begin{itemize}
+ \item Group together empty space and neighboring particles.
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=2.5cm]{gaunt_fisher2.pdf}
+\hfil\includegraphics[width=4cm]{gaunt_fisher3.pdf}
+\vfill
+\eject
+
+\title{Defect model}
+\vskip-5pt
+\begin{itemize}
+ \item Map particle system to a model of defects:
+ $$
+ \Xi_\Lambda^{(\nu)}(z)=z^{\rho_m|\Lambda|}\sum_{\underline\gamma\subset\mathfrak C_\nu(\Lambda)}
+ \left(\prod_{\gamma\neq\gamma'\in\underline\gamma}\Phi(\gamma,\gamma')\right)
+ \prod_{\gamma\in\underline\gamma}\zeta_\nu^{(z)}(\gamma)
+ $$
+ \begin{itemize}
+ \item $\Phi$: hard-core repulsion of defects.
+ \item $\zeta_\nu^{(z)}(\gamma)$: activity of defect.
+ \end{itemize}
+ \item The activity of a defect is exponentially small: $\exists\epsilon\ll 1$
+ $$
+ \zeta_\nu^{(z)}(\gamma)<\epsilon^{|\gamma|}
+ $$
+ \vskip-5pt
+ \item Low-fugacity expansion for defects.
+\end{itemize}
+\eject
+
+\title{Crystallization}
+\vfill
+\begin{itemize}
+ \item Peierls argument: in order to have a particle at $x$ that is not compatible with the $\nu$-th perfect packing, it must be part of or surrounded by a defect.
+ \vfill
+ \item Note: a naive Peierls argument requires the partition function to be independent from the boundary condition. This is not necessarily the case here, and we need elements from Pirogov-Sinai theory.
+\end{itemize}
+
+
+\end{document}