Ian Jauslin
summaryrefslogtreecommitdiff
blob: 253f5ce049afacfc5be4a4d894aca6acc3728432 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
\documentclass{kiss}
\usepackage{presentation}
\usepackage{header}
\usepackage{toolbox}
\usepackage{tikz}

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf\Large
\hfil Emergence of a nematic phase\par
\smallskip
\hfil in a system of hard plates\par
\vfil
\large
\hfil Ian Jauslin
\normalsize
\vfil
\hfil\rm with {\bf Margherita Disertori} and {\bf Alessandro Giuliani}\par
\vfil
\hfil\href{http://ian.jauslin.org}{\tt http://ian.jauslin.org}
\eject

\setcounter{page}1
\pagestyle{plain}

\title{Hard plates}
  \begin{itemize}
    \item Parallelepiped $k\times k^\alpha\times 1$, $\alpha\in[0,1]$, $k\gg1$
  \end{itemize}
  \bigskip
  \includegraphics[width=\textwidth]{figs/plate.pdf}
  \begin{itemize}
    \item Center in $\mathbb R^3$
  \end{itemize}
\eject

\title{Hard plates}
  \begin{itemize}
    \item 6 orientations
  \end{itemize}
  \vfil
  \hfil\includegraphics[width=220pt]{figs/plates.pdf}
\eject

\title{Heuristics}
  \begin{itemize}
    \item For $\frac12\leqslant\alpha\leqslant1$
  \end{itemize}
  \vfil
  \includegraphics[width=\textwidth]{figs/phase_largealpha.pdf}
  \begin{itemize}
    \itemptchange{$\scriptstyle\blacktriangleright$}
    \begin{itemize}
      \item $N_b$: biaxial nematic
      \item $N_-$: plate-like nematic
      \item $I$: isotropic
      \item $?$: ?
    \end{itemize}
    \itemptreset
  \end{itemize}
\eject

\title{Heuristics}
  \begin{itemize}
    \item For $0\leqslant\alpha\leqslant\frac12$
  \end{itemize}
  \vfil
  \includegraphics[width=\textwidth]{figs/phase_smallalpha.pdf}
  \begin{itemize}
    \itemptchange{$\scriptstyle\blacktriangleright$}
    \begin{itemize}
      \item $N_b$: biaxial nematic
      \item $N_+$: rod-like nematic
      \item $I$: isotropic
      \item $?$: ?
    \end{itemize}
    \itemptreset
  \end{itemize}
\eject


\title{Result}
  \begin{itemize}
    \item $\frac56<\alpha<1$ (we can also do $\alpha=1$).  \end{itemize}
  \vfil
  \includegraphics[width=\textwidth]{figs/phase_result.pdf}
\eject

\title{Previous results}
  \begin{itemize}
    \item \href{http://dx.doi.org/10.1007/s00220-013-1767-1}{[Disertori, Giuliani, 2013]}: 2-dimensional hard rods (on a lattice).
    \item \href{http://dx.doi.org/10.1007/BF00535264}{[Bricmont, Kuroda, Lebowitz, 1984]}: 2-dimensional hard needles.
    \item \href{http://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x}{[Onsager, 1949]}: elongated molecules in 3 dimensions: 1st order phase transition! (non-rigorous)
  \end{itemize}
\eject

\title{Setup}
  \begin{itemize}
    \item {\it Type} of a plate: $q\in\{1,2,3\}$.
    \item (Grand-canonical) Gibbs average, in a box $\Lambda$, with $q$-boundary conditions:
  \end{itemize}
  $$
    \left<A\right>_{\Lambda,q}:=\frac1{Z(\Lambda|q)}\int_{\Omega_{\Lambda,q}}\kern-10pt dP\ z^{|P|}\varphi(P)A(P)
  $$
  \begin{itemize}
    \itemptchange{$\scriptstyle\blacktriangleright$}
    \begin{itemize}
      \item $\Omega_{\Lambda,q}$: plate configurations with $q$-boundary conditions, $|P|$: number of plates in $P$,
      \item $z$: {\it activity}: $z=e^{\beta\mu}$,
      \item $\varphi(P)$: hard-core potential,
      \item $Z(\Lambda|q)$: partition function (normalization),
      \item $A$: {\it local} observable.
    \end{itemize}
    \itemptreset
  \end{itemize}
\eject

\title{Setup}
  \begin{itemize}
    \item Boundary condition: any plate, centered at $x\in\Lambda$, that satisfies
      $$
	d_\infty(x,\ \mathbb R^3\setminus\Lambda)\leqslant\left(\frac4{1-\alpha}+3\right)\frac k2
      $$
      is of type $q$.

    \item Local observable:
      $$
	A(P)=\sum_{p\in P}a(p)
      $$
      and $a$ is {\it compactly supported}.
  \end{itemize}
\eject

\title{Theorem}
  \begin{itemize}
    \item If $zk^{3-\alpha}\ll1\ll zk^{5\alpha-2}$
    \itemptchange{$\scriptstyle\blacktriangleright$}
    \begin{itemize}
      \item $\mathds1_x(P)$: indicator that $\exists p\in P$: $d_\infty(x,p)\leqslant\frac12$:
	$$
	  \left<\mathds1_x(P)\right>_{\Lambda,q}\equiv\rho=z(1+o(1))
	$$
      \vskip5pt
      \item $\mathcal N_{x,q}(P)$: number of plates $p\in P$ of type $q$ with $d_\infty(p,x)\leqslant\frac k4$: for $m\neq q$,
	$$
	  \left<\mathcal N_{x,q}(P)\right>_{\Lambda,q}\geqslant C zk^3\gg1,\quad
	  \left<\mathcal N_{x,m}(P)\right>_{\Lambda,q}=o(1)
	$$
      \item There exists $\eta_k\to0$ as $k\to\infty$ such that
	$$
	  \left<\mathds1_x(P);\mathds1_y(P)\right>_{\Lambda,q}^T\leqslant C\rho^2 \eta_k^{\frac{|x-y|}k}
	$$
    \end{itemize}
    \itemptreset
  \end{itemize}
\eject

\title{Cluster expansion}
  \begin{itemize}
    \item For $\mathbf A\equiv(A_1,\cdots,A_n)$, $\mathbf s\equiv(s_1,\cdots,s_n)\in\mathbb R^n$
      $$
	F_{\Lambda,q}(\mathbf s\cdot\mathbf A):=\log\int_{\Omega_{\Lambda,q}}\kern-10pt dP\ z^{|P|}\varphi(P)e^{\sum_{i=1}^ns_iA_i(P)}
      $$
    \item Generating function:
      $$
	\left<A_1,\cdots,A_n\right>_{\Lambda,q}^T=\left.\partial_{s_1}\cdots\partial_{s_n}F_{\Lambda,q}(\mathbf s\cdot\mathbf A)\right|_{\mathbf s=0}
      $$
  \end{itemize}
\eject 

\title{Cluster expansion}
  $$
    F_{\Lambda,q}(\mathbf s\cdot\mathbf A)=F^{(0)}_{\Lambda,q}(\mathbf s\cdot\mathbf A)+\sum_{\mathcal X\in\Xi(\Lambda)}\phi^T(\mathcal X)\prod_{X\in\mathcal X} K_{\Lambda,q}^{(\mathbf s\cdot\mathbf A)}(X)
  $$
  \begin{itemize}
    \itemptchange{$\scriptstyle\blacktriangleright$}
    \begin{itemize}
      \item $F_{\Lambda,q}^{(0)}(\mathbf s\cdot\mathbf A)$: {\it all} plates are of type $q$,
      \item $\Xi(\Lambda)$: collections of {\it polymers}: connected unions of $\frac k2\times\frac k2\times\frac k2$ cubes,
      \item $\phi^T$: {\it Mayer coefficient},
      \item $K_{\Lambda,q}^{(\mathbf s\cdot\mathbf A)}(X)$: {\it activity} of $X$.
    \end{itemize}
    \itemptreset
  \end{itemize}
\eject

\title{Cluster expansion}
  \begin{itemize}
    \item Absolutely convergent expansion: $\exists\epsilon_k\to0$ such that, for $m\geqslant0$,
      $$
	\sum_{\mAthop{\mathcal X\in\Xi(\Lambda)}_{|\mathcal X|\ge m}}\left|\phi^T(\mathcal X)\prod_{X\in\mathcal X}K_{\Lambda,q}^{(\mathbf s\cdot\mathbf A)}(X)\right|\le
	\epsilon_k^m
      $$
  \end{itemize}

\end{document}