Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'Jauslin_Qmath_2016.tex')
-rw-r--r--Jauslin_Qmath_2016.tex183
1 files changed, 183 insertions, 0 deletions
diff --git a/Jauslin_Qmath_2016.tex b/Jauslin_Qmath_2016.tex
new file mode 100644
index 0000000..ac7649b
--- /dev/null
+++ b/Jauslin_Qmath_2016.tex
@@ -0,0 +1,183 @@
+\documentclass{kiss}
+\usepackage{presentation}
+\usepackage{header}
+\usepackage{toolbox}
+
+\begin{document}
+\pagestyle{empty}
+\hbox{}\vfil
+\bf\Large
+\hfil Ground state construction\par
+\smallskip
+\hfil of Bilayer Graphene\par
+\vfil
+\large
+\hfil Ian Jauslin
+\normalsize
+\vfil
+\hfil\rm joint with {\bf Alessandro Giuliani}\par
+\vfil
+arXiv:{\tt \href{http://arxiv.org/abs/1507.06024}{1507.06024}}\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
+\eject
+
+\setcounter{page}1
+\pagestyle{plain}
+
+\title{Monolayer graphene}
+\begin{itemize}
+ \item 2D crystal of carbon atoms on a honeycomb lattice.
+\end{itemize}
+\vfill
+\hfil\hskip-25pt\includegraphics[height=150pt]{figs/monolayer.pdf}\par
+\eject
+
+\title{Bilayer graphene}
+\begin{itemize}
+ \item 2 graphene layers in {\it AB} stacking.
+\end{itemize}
+\vfill
+\hskip12pt\includegraphics[height=150pt]{figs/basegrid.pdf}\par
+\eject
+
+\title{Bilayer graphene}
+\begin{itemize}
+ \item Rhombic lattice $\Lambda\equiv\mathbb Z^2$, 4 atoms per site.
+\end{itemize}
+\vfill
+\hskip12pt\includegraphics[height=150pt]{figs/cellgraph.pdf}\par
+\eject
+
+\title{Hamiltonian}
+\begin{itemize}
+ \item Hamiltonian:
+ $$
+ \mathcal H=\mathcal H_0+UV
+ $$
+ \item Non-interacting Hamiltonian: hoppings
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=\textwidth]{figs/hoppings4.pdf}\par
+\vfill
+\begin{itemize}
+ \item Interaction: weak, short-range (screened Coulomb).
+\end{itemize}
+\eject
+
+\title{Non-interacting Hamiltonian}
+\vskip-10pt
+$$
+ \mathcal H_0=\sum_{k\in\hat\Lambda}
+ \left(\begin{array}c
+ \hat a_k^\dagger\\
+ \hat{\tilde b}_k^\dagger\\
+ \hat{\tilde a}_k^\dagger\\
+ \hat b_k^\dagger
+ \end{array}\right)^T
+ \hat H_0(k)
+ \left(\begin{array}c
+ \hat a_k\\
+ \hat{\tilde b}_k\\
+ \hat{\tilde a}_k\\
+ \hat b_k
+ \end{array}\right)
+$$
+\vfill
+$$
+ \kern-10pt
+ \hat H_0(k):=
+ \left(\begin{array}{*{4}{c}}
+ 0&\gamma_1&0&\gamma_0\Omega^*(k)\\
+ \gamma_1&0&\gamma_0\Omega(k)&0\\
+ 0&\gamma_0\Omega^*(k)&0&\gamma_3\Omega(k)e^{3ik_x}\\
+ \gamma_0\Omega(k)&0&\gamma_3\Omega(k)e^{-3ik_x}
+ \end{array}\right)
+$$
+\vfill
+$$
+ \Omega(k):=1+2e^{-\frac32ik_x}\cos({\textstyle\frac{\sqrt3}2}k_y)
+$$
+\eject
+
+\title{Non-interacting Hamiltonian}
+\vfill
+\begin{itemize}
+ \item Hopping strengths:
+ $$
+ \gamma_0=1,\quad
+ \gamma_1=\epsilon,\quad
+ \gamma_3=0.33\times\epsilon
+ $$
+ \item Experimental value $\epsilon\approx0.1$, here, $\epsilon\ll1$.
+\end{itemize}
+\vfill
+\eject
+
+\title{Interaction}
+$$
+ V=\sum_{x,y}v(|x-y|)\left(n_x-\frac12\right)\left(n_y-\frac12\right)
+$$
+\begin{itemize}
+ \item $\displaystyle\sum_{x,y}$: sum over pairs of atoms
+ \item $v(|x-y|)\leqslant e^{-c|x-y|}$, $c>0$
+ \item $-\frac12$: {\it half-filling}.
+\end{itemize}
+\eject
+
+\title{Non-interacting Hamiltonian}
+\begin{itemize}
+ \item Eigenvalues of $\hat H_0(k)$:
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=\textwidth]{figs/global_nog4D.pdf}\par
+\vfill
+\eject
+
+\title{Non-interacting Hamiltonian}
+\begin{itemize}
+ \item $|k|\gg\epsilon$
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=\textwidth]{figs/first_nog4D.pdf}\par
+\vfill
+\eject
+
+\title{Non-interacting Hamiltonian}
+\begin{itemize}
+ \item $\epsilon^2\ll|k|\ll\epsilon$
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=\textwidth]{figs/second_nog4D.pdf}\par
+\vfill
+\eject
+
+\title{Non-interacting Hamiltonian}
+\begin{itemize}
+ \item $|k|\ll\epsilon^2$
+\end{itemize}
+\vfill
+\hfil\includegraphics[width=200pt]{figs/third_nog4D.pdf}\par
+\vfill
+\eject
+
+\title{Theorem}
+$\exists U_0,\epsilon_0>0$, independent, such that, for $\epsilon<\epsilon_0$, $|U|<U_0$,
+\begin{itemize}
+ \item the free energy
+ $$
+ f:=-\frac1{|\Lambda|\beta}\log\mathrm Tr(e^{-\beta \mathcal H})
+ $$
+ is analytic in $U$, uniformly in $\beta$ and $|\Lambda|$,
+ \item the two-point Schwinger function
+ $$
+ s_2(x-y):=\frac{\mathrm Tr(e^{-\beta \mathcal H}a_xa_y^\dagger)}{\mathrm Tr(e^{-\beta \mathcal H})}
+ $$
+ is analytic in $U$, uniformly in $\beta$ and $|\Lambda|$.
+\end{itemize}
+\vfill
+\eject
+
+\title{Renormalization group flow}
+\vfill
+\includegraphics[width=250pt]{figs/flow.pdf}
+
+\end{document}