Ian Jauslin
summaryrefslogtreecommitdiff
blob: 05c4b9e3a9eb8db9729e1456c2729b13583ffd21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
\documentclass{kiss}
\usepackage{presentation}
\usepackage{header}
\usepackage{toolbox}

\def\upitem{\itemptchange{$\scriptstyle\blacktriangleright$}}
\let\downitem\itemptreset

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf
\large
\hfil The renormalization group\par
\smallskip
\hfil in the weak- and strong-coupling regimes
\vfil
\hfil Ian Jauslin
\rm
\normalsize

\vfil
\small
\hfil advised by {\normalsize\bf A.~Giuliani}\par
\vskip20pt
\hfil{\tt http://ian.jauslin.org/}
\eject


\setcounter{page}1
\pagestyle{plain}
\title{Outline}
\vfill
\begin{itemize}
\item Weak coupling: {\bf Bilayer graphene}
\vskip30pt
\item Strong coupling: {\bf Hierarchical Kondo model}
\end{itemize}
\vfill
\eject

\pagestyle{empty}
\hbox{}
\vfill
\hfil\vrule height0.5pt width0.75\textwidth\par
\vskip20pt
\hfil{\bf Bilayer graphene}\par
\vskip20pt
\hfil\vrule height0.5pt width0.75\textwidth\par
\vfill
joint with {\bf A.~Giuliani}\hfill arXiv:{\tt 1507.06024}
\eject
\addtocounter{page}{-1}
\pagestyle{plain}

\title{Bilayer graphene}
\vfill
\includegraphics[width=0.8\textwidth]{Figs/bilayer.pdf}
\vfill
\eject

\title{Bilayer graphene}
\begin{itemize}
\item Hamiltonian
$$
H=H_0+UH_I
$$
\vskip-10pt
\upitem
\begin{itemize}
\item $H_0$: Kinetic term for the electrons (hoppings between atoms).
\item $UH_I$: Short-range screened Coulomb interaction between electrons (of {\it strength} $U$):
$$
UH_I=U\sum_{x, y}v(|x-y|)\left(a_x^\dagger a_x-\frac12\right)\left(a_y^\dagger a_y-\frac12\right)
$$
\end{itemize}
\downitem
\item Non-interacting case ($U=0$): {\it integrable}.
\item Assume $|U|\ll1$: perturb.
\end{itemize}
\eject

\title{Non-interacting Hamiltonian}
\begin{itemize}
\item In Fourier space:
$$
H_0=\sum_k A_k^\dagger \hat H_0(k) A_k
$$
$A_k:=(a_{k,1}, a_{k,2}, a_{k,3}, a_{k,4})$, where 1,2,3,4 is the {\it valley index},
$$
\hat H_0(k)=
-\left(\begin{array}{*{4}{c}}
0&\gamma_1&0&\gamma_0\Omega^*(k)\\[0.2cm]
\gamma_1&0&\gamma_0\Omega(k)&0\\[0.2cm]
0&\gamma_0\Omega^*(k)&0&\gamma_3\Omega(k)e^{3ik_x}\\[0.2cm]
\gamma_0\Omega(k)&0&\gamma_3\Omega^*(k)e^{-3ik_x}&0
\end{array}\right)
$$
with $\Omega(k_1,k_2):=1+2e^{\frac32ik_1}\cos({\scriptstyle\frac{\sqrt3}2}k_2)$.
\end{itemize}
\eject

\title{Non-interacting Hamiltonian}
\begin{itemize}
\item Hopping strengths: $\gamma_0=1$, $\gamma_1=0.1$, $\gamma_3=0.034$
\end{itemize}
\hfil\includegraphics[width=\textwidth]{Figs/hoppings4.pdf}
\vfil\eject

\title{Non-interacting Hamiltonian}
\begin{itemize}
\item Eigenvalues of $\hat H_0(k)$ ({\it bands})
\end{itemize}
\hfil\includegraphics{Figs/bands_global.pdf}
\vfil\eject

\addtocounter{page}{-1}
\title{Non-interacting Hamiltonian}
\begin{itemize}
\item For $|k|\gg\gamma_1$ ({\it irrelevant, superrenormalizable} regime)
\end{itemize}
\hfil\includegraphics{Figs/bands_first.pdf}
\vfil\eject

\addtocounter{page}{-1}
\title{Non-interacting Hamiltonian}
\begin{itemize}
\item For $\gamma_1^2\ll|k|\ll\gamma_1$ ({\it marginal} regime)
\end{itemize}
\hfil\includegraphics{Figs/bands_second.pdf}
\vfil\eject

\addtocounter{page}{-1}
\title{Non-interacting Hamiltonian}
\begin{itemize}
\item For $|k|\ll\gamma_1^2$ ({\it irrelevant, superrenormalizable} regime)
\end{itemize}
\hfil\includegraphics{Figs/bands_third.pdf}
\vfil\eject

\title{Main result}
\vfil
\begin{framed}
If $|U|$ and $\gamma_1$ and $\gamma_3$ are small enough, then the specific ground state energy
$$
e_0:=-\lim_{\beta\to\infty}\lim_{|\Lambda|\to\infty}\frac1{\beta|\Lambda|}\log(\mathrm{Tr}(e^{-\beta H}))
$$
and the two-point correlation functions are {\it analytic} functions of $U$.
\end{framed}
\begin{itemize}
\item In other words, if $|U|$ is small enough, then the qualitative behavior of the system is similar to that at $U=0$ ({\it weak coupling}).
\end{itemize}
\eject

\pagestyle{empty}
\hbox{}
\vfill
\hfil\vrule height0.5pt width0.75\textwidth\par
\vskip20pt
\hfil{\bf Hierarchical Kondo model}\par
\vskip20pt
\hfil\vrule height0.5pt width0.75\textwidth\par
\vfill
\hfil joint with {\bf G.~Benfatto} and {\bf G.~Gallavotti}\par
\vskip10pt
\hfil {\scriptsize doi:{\tt 10.1007/s10955-015-1378-7} and doi:{\tt 10.1007/s10955-015-1370-2}}
\eject
\addtocounter{page}{-1}
\pagestyle{plain}

\title{Kondo model}
\begin{itemize}
\item [P.~Anderson, 1960], [J.~Kondo, 1964]:
$$
H=H_0+V\quad\mathrm{on\ }\mathcal H=\mathcal F_L\otimes\mathbb C^2
$$
\itemptchange{$\scriptstyle\blacktriangleright$}
\begin{itemize}
\item $H_0$: kinetic term of the {\it electrons}
$$
H_0:=\sum_{x}\sum_{\alpha=\uparrow,\downarrow}a^\dagger_\alpha(x)\,\left(-\frac{\Delta}2-1\right)\,a_\alpha(x)
$$
\item $V$: interaction with the {\it impurity}
$$
V=-\lambda_0\sum_{j=1,2,3}\sum_{\alpha_1,\alpha_2}a^\dagger_{\alpha_1}(0)\sigma^j_{\alpha_1,\alpha_2}a_{\alpha_2}(0)\otimes \tau^j
$$
\end{itemize}
\itemptreset
\end{itemize}
\hfil\includegraphics[width=0.8\textwidth]{Figs/kondo_model.pdf}\par
\eject

\title{Kondo effect: magnetic susceptibility}
\begin{itemize}
\item Non-interacting magnetic susceptibility
\itemptchange{$\scriptstyle\blacktriangleright$}
\begin{itemize}
\item Isolated impurity: $\chi^{(0)}(0,\beta)\displaystyle\mathop{\longrightarrow}_{\beta\to\infty}\infty$
\item Chain of electrons: $\displaystyle\lim_{\beta\to\infty}\lim_{L\to\infty}\frac1L\chi_e(0,\beta)<\infty.$
\end{itemize}
\itemptreset
\item Anti-ferromagnetic interaction: $\lambda_0<0$:
$$
\lim_{\beta\to\infty}\chi^{(\lambda_0)}(0,\beta)<\infty.
$$
\item {\it Strong-coupling} effect: the qualitative behavior changes as soon as $\lambda_0\neq0$.
\end{itemize}
\eject

\title{Previous results}
\begin{itemize}
\item [J.~Kondo, 1964]: third order Born approximation.
\vskip0pt plus3fil
\item [P.~Anderson, 1970], [K.~Wilson, 1975]: renormalization group approach
\itemptchange{$\scriptstyle\blacktriangleright$ }
\begin{itemize}
\item Sequence of effective Hamiltonians at varying energy scales.
\item For anti-ferromagnetic interactions, the effective Hamiltonians go to a {\it non-trivial fixed point}.
\end{itemize}
\itemptreset
\item{\tt Remark}: [N.~Andrei, 1980]: the Kondo model (suitably linearized) is exactly solvable via Bethe Ansatz.
\end{itemize}
\eject

\title{Current results}
\begin{itemize}
\item Hierarchical Kondo model: idealization of the Kondo model that shares its scaling properties.
\item It is {\it exactly solvable}: the map relating the effective theories at different scales is {\it explicit} (no perturbative expansions).
\item For $\lambda_0<0$, the flow tends to a non-trivial fixed point, and $\chi^{(\lambda_0)}<\infty$ in the $\beta\to\infty$ limit (Kondo effect).
\end{itemize}
\eject

\title{Hierarchical model}
\begin{itemize}
\item Imaginary time: $\psi_\alpha^\pm(t):=e^{t H_0}a_\alpha^\pm(0)e^{-t H_0}$.
\item Scale decomposition
$$
\psi_\alpha^\pm(t):=\sum_{m\leqslant0}\psi_\alpha^{[m]\pm}(t)
$$
\vfil
\hfil\includegraphics[width=0.8\textwidth]{Figs/hierarchical_boxtree.pdf}\par
\end{itemize}
\eject

\title{Hierarchical beta function} \begin{itemize} \item Beta function ({\it exact})
$$\begin{array}{r@{\ }l}
C^{[m]}=&\displaystyle1+ \frac32(\ell_0^{[m]})^2+9(\ell_1^{[m]})^2\\[0.3cm] \ell_0^{[m-1]}=&\displaystyle\frac1{C^{[m]}}\Big(\ell_0^{[m]} +3 \ell_0^{[m]}\ell_1^{[m]} -(\ell_0^{[m]})^2\Big)\\[0.5cm]
\ell_1^{[m-1]}=&\displaystyle\frac1{C^{[m]}}\Big(\frac12\ell_1^{[m]}+\frac18(\ell_0^{[m]})^2\Big)
\end{array}$$
\end{itemize}
\eject

\title{Flow}
\vfil
\hfil\includegraphics[width=0.8\textwidth]{Figs/sd_phase.pdf}\par
Fixed points: 0 (stable), $\bm\ell^*$ (marginal in $\ell_0$ and stable in $\ell_1$)
\eject

\title{Kondo effect}
\begin{itemize}
\item Fix $h=0$.
\item At $0$, the susceptibility diverges as $\beta$.
\item At $\bm\ell^*$, the susceptibility remains finite in the $\beta\to\infty$ limit.
\end{itemize}
\hfil\includegraphics[width=150pt]{Figs/sd_susc_0_28.pdf}\par
\eject

\title{Conclusion and perspectives}
\begin{itemize}
\item Two examples: {\color{blue}bilayer graphene} and the {\color{blue}hierarchical Kondo model}, which can be studied via {\it constructive}, {\it rigorous} implementations of the renormalization group technique.
\item Bilayer graphene: weak coupling.
\item Hierarchical Kondo model: strong coupling (non-trivial fixed point).
\item Extensions: full Kondo model, BCS theory, high-$T_c$ superconductivity...
\end{itemize}

\end{document}