Ian Jauslin
summaryrefslogtreecommitdiff
blob: d44e6091be54d6aa9873211512c3861f0044aedf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
\documentclass{kiss}
\usepackage{presentation}
\usepackage{header}

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf
\large
\hfil A Pfaffian formula\par
\smallskip
\hfil for monomer-dimer partition functions\par
\vfil
\hfil Ian Jauslin
\rm
\normalsize

\vfil
\small
\hfil joint with {\normalsize\bf A.~Giuliani} and {\normalsize\bf E.H.~Lieb}\par
\vskip10pt
arXiv: {\tt1510.05027}\hfill{\tt http://ian.jauslin.org/}
\eject

\pagestyle{plain}
\setcounter{page}{1}

\title{Monomer-dimer system}
\bigskip
\hfil\includegraphics{Figs/even_example.pdf}
\begin{itemize}
\item Monomer: occupies a single vertex.
\item Dimer: occupies an edge and its end-vertices.
\item Monomer-Dimer (MD) covering: every vertex is occupied exactly once.
\end{itemize}
\eject

\addtocounter{page}{-1}
\title{Monomer-dimer system}
\bigskip
\hfil\includegraphics{Figs/MD_example.pdf}
\begin{itemize}
\item Monomer: occupies a single vertex.
\item Dimer: occupies an edge and its end-vertices.
\item Monomer-Dimer (MD) covering: every vertex is occupied exactly once.
\end{itemize}
\eject

\title{Partition function}
\begin{itemize}
\item Weights: edges $d_e$, vertices $\ell_v$ (for simplicity, assume they are $\ge0$).
\item Partition function:
$$
\Xi(\bm\ell,\mathbf d)=\sum_{\mathrm{MD\ coverings}}\prod_{\mAthop{e:}_{\mAthop{\mathrm{occupied}}_{\mathrm{by\ dimer}}}}d_e\prod_{\mAthop{v:}_{\mAthop{\mathrm{occupied}}_{\mathrm{\ by\ monomer}}}}\ell_v.
$$
\end{itemize}
\eject

\title{Kasteleyn's theorem}
\begin{itemize}
\item If there are {\bf no monomers} (i.e. $\ell_v=0$ for all $v$), then $\Xi$ counts pairs of neighboring vertices:
$$
\Xi(\mathbf0,\mathbf d)=\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}\prod_{i=1}^nd_{(\pi(2i-1),\pi(2i))}.
$$
\end{itemize}
\hfil\includegraphics[width=3cm]{Figs/even_example_label_nodir.pdf}
\eject

\title{Kasteleyn's theorem}
\begin{itemize}
\item If there are {\bf no monomers} (i.e. $\ell_v=0$ for all $v$), then $\Xi$ counts pairs of neighboring vertices:
$$
\Xi(\mathbf0,\mathbf d)=\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}\prod_{i=1}^nd_{(\pi(2i-1),\pi(2i))}.
$$
\end{itemize}
\hfil\includegraphics[width=3cm]{Figs/even_example_label_nodir_dimers.pdf}
\eject

\title{Kasteleyn's theorem}
\begin{itemize}
\item Assume, in addition, that the graph is {\bf planar}.
\item [Kasteleyn, 1963]: {\color{blue}Direct} the graph in such a way that, for every face, moving along the boundary of the face in the counterclockwise direction, the number of arrows going against the motion is odd.
\end{itemize}
\hfil\includegraphics{Figs/even_example_directed.pdf}
\eject

\title{Kasteleyn's theorem}
\begin{itemize}
\item Recall
$$
\Xi(\mathbf0,\mathbf d)=\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}\prod_{i=1}^nd_{(\pi(2i-1),\pi(2i))}.
$$
\item Kasteleyn's theorem: if $s_{i,j}:=+1$ if $i\rightarrow j$ and $-1$ if $j\rightarrow i$, then
$$
\Xi(\mathbf0,\mathbf d)=\left|\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}(-1)^\pi\prod_{i=1}^nd_{(\pi(2i-1),\pi(2i))}s_{\pi(2i-1),\pi(2i)}\right|.
$$
\item In other words, $(-1)^\pi\prod_{i=1}^ns_{\pi(2i-1),\pi(2i)}$ is {\color{blue} independent} of $\pi$.
\end{itemize}
\eject

\title{Kasteleyn's theorem}
\begin{itemize}
\item $(-1)^\pi\prod_{i=1}^ns_{\pi(2i-1),\pi(2i)}$:
\end{itemize}
\hfil\includegraphics{Figs/even_example_label_dimers.pdf}
\eject

\title{Kasteleyn's theorem}
\begin{itemize}
\item Recall
$$
\Xi(\mathbf0,\mathbf d)=\left|\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}(-1)^\pi\prod_{i=1}^nd_{(\pi(2i-1),\pi(2i))}s_{\pi(2i-1),\pi(2i)}\right|.
$$
\item Introducing an antisymmetric matrix $a$ with entries $a_{i,j}:=d_{(i,j)}s_{i,j}$ for $i<j$,
$$
\Xi(\mathbf0,\mathbf d)=|\mathrm{pf}(a)|
$$
with
$$
\mathrm{pf}(a)=\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}(-1)^\pi\prod_{i=1}^na_{\pi(2i-1),\pi(2i)}.
$$
\item Determinantal relation: $\mathrm{pf(a)}^2=\det(a)$.
\end{itemize}
\eject

\title{Boundary monomers}
\begin{itemize}
\item Assume the monomers are on the {\bf boundary} of the graph.
\item If the monomers are fixed, the MD partition function reduces to a pure dimer partition function on a sub-graph.
\end{itemize}
\hfil\includegraphics{Figs/even_example_monomer_shadow.pdf}
\eject

\title{Boundary monomers}
\begin{itemize}
\item By Kasteleyn's theorem
$$
\Xi(\bm\ell,\mathbf d)=\sum_{\mathcal M:\ \mathrm{monomers}}\left|\mathrm{pf}([a]_{\mathcal M})\right|\prod_{v\in\mathcal M}\ell_v
$$
where $[a]_{\mathcal M}$ is obtained from $a$ by removing the lines and columns corresponding to vertices in $\mathcal M$.
\item[Lieb, 1968]: if $A_{i,j}=a_{i,j}+(-1)^{i+j}\ell_i\ell_j$ for $i<j$ and $A_{j,i}=-A_{i,j}$, then
$$\mathrm{pf}(A)=\sum_{\mathcal M}\mathrm{pf}([a]_{\mathcal M})\prod_{v\in\mathcal M}\ell_v.$$
\end{itemize}
\eject

\title{Boundary monomers}
\begin{itemize}
\item Question: is the sign of $\mathrm{pf}([a]_{\mathcal M})$ independent of $\mathcal M$?
\item In general, no:
\end{itemize}
\hfil\includegraphics{Figs/even_example_counterexample_label.pdf}
\eject

\addtocounter{page}{-1}
\title{Boundary monomers}
\begin{itemize}
\item Question: is the sign of $\mathrm{pf}([a]_{\mathcal M})$ independent of $\mathcal M$?
\item In general, no:
\end{itemize}
\hfil\includegraphics{Figs/even_example_counterexample_label_dimers.pdf}
\eject

\addtocounter{page}{-1}
\title{Boundary monomers}
\begin{itemize}
\item Question: is the sign of $\mathrm{pf}([a]_{\mathcal M})$ independent of $\mathcal M$?
\item In general, no:
\end{itemize}
\hfil\includegraphics{Figs/even_example_counterexample_monomer.pdf}
\eject

\addtocounter{page}{-1}
\title{Boundary monomers}
\begin{itemize}
\item Question: is the sign of $\mathrm{pf}([a]_{\mathcal M})$ independent of $\mathcal M$?
\item In general, no:
\end{itemize}
\hfil\includegraphics{Figs/even_example_counterexample_monomer_dimers.pdf}
\eject

\title{Boundary monomers}
\begin{itemize}
\item The vertices must be labeled and the edges directed correctly.
\end{itemize}
\hfil\includegraphics{Figs/even_example_phantom.pdf}
\eject

\addtocounter{page}{-1}
\title{Boundary monomers}
\begin{itemize}
\item The vertices must be labeled and the edges directed correctly.
\end{itemize}
\hfil\includegraphics{Figs/even_example_label_pre.pdf}
\eject

\addtocounter{page}{-1}
\title{Boundary monomers}
\begin{itemize}
\item The vertices must be labeled and the edges directed correctly.
\end{itemize}
\hfil\includegraphics{Figs/even_example_label.pdf}
\eject

\title{Main theorem}
\vfill
\begin{framed}
Every {\bf planar} graph can be labeled and directed in such a way that the {\bf boundary} monomer-dimer partition function is
$$
\Xi(\bm\ell,\mathbf d)=\mathrm{pf}(A)
$$
with $A_{i,j}=d_{(i,j)}s_{i,j}+(-1)^{i+j}\ell_i\ell_j$ for $i<j$.
\end{framed}
\vfill
\eject

\title{Sketch of the proof}
\hfil\includegraphics[width=6cm]{Figs/enclosed_example_phantom.pdf}
\eject

\addtocounter{page}{-1}
\title{Sketch of the proof}
\hfil\includegraphics[width=6cm]{Figs/enclosed_example_auxiliary_thin.pdf}
\eject

\addtocounter{page}{-1}
\title{Sketch of the proof}
\hfil\includegraphics[width=6cm]{Figs/enclosed_example_cover_phantom.pdf}
\eject

\addtocounter{page}{-1}
\title{Sketch of the proof}
\hfil\includegraphics[width=6cm]{Figs/enclosed_example_auxiliary_cover.pdf}
\eject

\title{Boundary monomer correlations}
\begin{itemize}
\item Monomer correlations at close packing:
$$
M_n(i_1,\cdots,i_{2n})=\frac1{\Xi(\mathbf0,\mathbf d)}\left.\frac{\partial^{2n}\Xi(\bm\ell,\mathbf d)}{\partial\ell_1\cdots\partial\ell_{2n}}\right|_{\bm\ell=\mathbf0}.
$$
\item Fermionic Wick rule:
$$
M_n(i_1,\cdots,i_{2n})=\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}(-1)^\pi\prod_{j=1}^nM_1(i_{\pi(2j-1)},i_{\pi(2j)}).
$$
\end{itemize}

\end{document}