Ian Jauslin
summaryrefslogtreecommitdiff
blob: bbdf14399ba3af4da47b932cbceee1966d05bdda (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#define VERSION "0.0"

#include <math.h>
#include <complex.h>
#include <fftw3.h>
#include <string.h>
#include <stdlib.h>
#include "navier-stokes.h"

// usage message
int print_usage();
// read command line arguments
int read_args(int argc, const char* argv[], ns_params* params, unsigned int* nsteps, unsigned int* computation_nr);

// compute enstrophy as a function of time in the I-NS equation
int enstrophy(ns_params params, unsigned int Nsteps);


#define COMPUTATION_ENSTROPHY 1
int main (int argc, const char* argv[]){
  ns_params params;
  unsigned int nsteps;
  int ret;
  unsigned int computation_nr;

  // default computation: phase diagram
  computation_nr=COMPUTATION_ENSTROPHY;

  // read command line arguments
  ret=read_args(argc, argv, &params, &nsteps, &computation_nr);
  if(ret<0){
    return(-1);
  }
  if(ret>0){
    return(0);
  }

  // enstrophy
  if(computation_nr==COMPUTATION_ENSTROPHY){
    enstrophy(params, nsteps);
  }

  return(0);
}

// usage message
int print_usage(){
  fprintf(stderr, "usage:\n       nstrophy enstrophy [-h timestep] [-K modes] [-v] [-N nsteps]\n\n       nstrophy -V [-v]\n\n");
  return(0);
}

// read command line arguments
#define CP_FLAG_TIMESTEP 1
#define CP_FLAG_NSTEPS 2
#define CP_FLAG_MODES 3
#define CP_FLAG_NU 4
int read_args(int argc, const char* argv[], ns_params* params, unsigned int* nsteps, unsigned int* computation_nr){
  int i;
  int ret;
  // temporary int
  int tmp_int;
  // temporary unsigned int
  unsigned int tmp_uint;
  // temporary double
  double tmp_double;
  // pointers
  char* ptr;
  // flag that indicates what argument is being read
  int flag=0;
  // print version and exit
  char Vflag=0;

  // defaults
  /*
  params->K=16;
  params->h=1e-3/(2*params->K+1);
  *nsteps=10000000;
  params->nu=1./1024/(2*params->K+1);
  */
  params->K=16;
  //h=2^-13
  params->h=0.0001220703125;
  //nu=2^-11
  *nsteps=10000000;
  params->nu=0.00048828125;

  // loop over arguments
  for(i=1;i<argc;i++){
    // flag
    if(argv[i][0]=='-'){
      for(ptr=((char*)argv[i])+1;*ptr!='\0';ptr++){
	switch(*ptr){
	// timestep
	case 'h':
	  flag=CP_FLAG_TIMESTEP;
	  break;
	// nsteps
	case 'N':
	  flag=CP_FLAG_NSTEPS;
	  break;
	// modes
	case 'K':
	  flag=CP_FLAG_MODES;
	  break;
	// friction
	case 'n':
	  flag=CP_FLAG_NU;
	  break;
	// print version
	case 'V':
	  Vflag=1;
	  break;
	default:
	  fprintf(stderr, "unrecognized option '-%c'\n", *ptr);
	  print_usage();
	  return(-1);
	  break;
	}
      }
    }
    // timestep
    else if(flag==CP_FLAG_TIMESTEP){
      ret=sscanf(argv[i],"%lf",&tmp_double);
      if(ret!=1){
	fprintf(stderr, "error: '-h' should be followed by a double\n       got '%s'\n",argv[i]);
	return(-1);
      }
      params->h=tmp_double;
      flag=0;
    }
    // nsteps
    else if(flag==CP_FLAG_NSTEPS){
      ret=sscanf(argv[i],"%u",&tmp_uint);
      if(ret!=1){
	fprintf(stderr, "error: '-N' should be followed by an unsigned int\n       got '%s'\n",argv[i]);
	return(-1);
      }
      *nsteps=tmp_uint;
      flag=0;
    }
    // modes
    else if(flag==CP_FLAG_MODES){
      ret=sscanf(argv[i],"%d",&tmp_int);
      if(ret!=1){
	fprintf(stderr, "error: '-K' should be followed by an int\n       got '%s'\n",argv[i]);
	return(-1);
      }
      params->K=tmp_int;
      flag=0;
    }
    // friction
    else if(flag==CP_FLAG_TIMESTEP){
      ret=sscanf(argv[i],"%lf",&tmp_double);
      if(ret!=1){
	fprintf(stderr, "error: '-n' should be followed by a double\n       got '%s'\n",argv[i]);
	return(-1);
      }
      params->nu=tmp_double;
      flag=0;
    }
    // computation to run
    else{
      if(strcmp(argv[i], "enstrophy")==0){
	*computation_nr=COMPUTATION_ENSTROPHY;
      }
      else{
	fprintf(stderr, "error: unrecognized computation: '%s'\n",argv[i]);
	print_usage();
	return(-1);
      }
      flag=0;
    }
  }

  // print version and exit
  if(Vflag==1){
    printf("nstrophy " VERSION "\n");
    return(1);
  }

  return(0);
}

// compute enstrophy as a function of time in the I-NS equation
int enstrophy(ns_params params, unsigned int Nsteps){
  _Complex double* u;
  _Complex double* tmp1;
  _Complex double* tmp2;
  _Complex double* tmp3;
  _Complex double alpha;
  _Complex double avg;
  unsigned int t;
  int kx,ky;
  fft_vects fft_vects;
  double rescale;

  // sizes
  params.S=2*params.K+1;
  params.N=4*params.K+1;

  // velocity field
  u=calloc(sizeof(_Complex double),params.S*params.S);
  params.g=calloc(sizeof(_Complex double),params.S*params.S);
  // allocate tmp vectors for computation
  tmp1=calloc(sizeof(_Complex double),params.S*params.S);
  tmp2=calloc(sizeof(_Complex double),params.S*params.S);
  tmp3=calloc(sizeof(_Complex double),params.S*params.S);

  /*
  srand(17);

  // initial value
  for(ky=0;ky<=params.K;ky++){
    u[KLOOKUP(0,ky,params.S)]=(-RAND_MAX*0.5+rand())*1.0/RAND_MAX+(-RAND_MAX*0.5+rand())*1.0/RAND_MAX*I;
  }
  for(kx=1;kx<=params.K;kx++){
    for(ky=-params.K;ky<=params.K;ky++){
      u[KLOOKUP(kx,ky,params.S)]=(-RAND_MAX*0.5+rand())*1.0/RAND_MAX+(-RAND_MAX*0.5+rand())*1.0/RAND_MAX*I;
    }
  }
  for(ky=-params.K;ky<=-1;ky++){
    u[KLOOKUP(0,ky,params.S)]=conj(u[KLOOKUP(0,-ky,params.S)]);
  }
  for(kx=-params.K;kx<=-1;kx++){
    for(ky=-params.K;ky<=params.K;ky++){
      u[KLOOKUP(kx,ky,params.S)]=conj(u[KLOOKUP(-kx,-ky,params.S)]);
    }
  }
  rescale=0;
  for(kx=-params.K;kx<=params.K;kx++){
    for(ky=-params.K;ky<=params.K;ky++){
      rescale=rescale+((__real__ u[KLOOKUP(kx,ky,params.S)])*(__real__ u[KLOOKUP(kx,ky,params.S)])+(__imag__ u[KLOOKUP(kx,ky,params.S)])*(__imag__ u[KLOOKUP(kx,ky,params.S)]))*(kx*kx+ky*ky);
    }
  }
  for(kx=-params.K;kx<=params.K;kx++){
    for(ky=-params.K;ky<=params.K;ky++){
      u[KLOOKUP(kx,ky,params.S)]=u[KLOOKUP(kx,ky,params.S)]*sqrt(155.1/rescale);
    }
  }
  */
  /*
  for(kx=-params.K;kx<=params.K;kx++){
    for(ky=-params.K;ky<=params.K;ky++){
      u[KLOOKUP(kx,ky,params.S)]=1.;
    }
  }
  */
  for(kx=-params.K;kx<=params.K;kx++){
    for(ky=-params.K;ky<=params.K;ky++){
      u[KLOOKUP(kx,ky,params.S)]=exp(-sqrt(kx*kx+ky*ky));
    }
  }


  // driving force
  for(kx=-params.K;kx<=params.K;kx++){
    for(ky=-params.K;ky<=params.K;ky++){
      //params.g[KLOOKUP(kx,ky,params.S)]=sqrt(kx*kx*ky*ky)*exp(-(kx*kx+ky*ky));
      if(kx==2 && ky==-1){
	params.g[KLOOKUP(kx,ky,params.S)]=0.5+sqrt(3)/2*I;
      }
      else if(kx==-2 && ky==1){
	params.g[KLOOKUP(kx,ky,params.S)]=0.5-sqrt(3)/2*I;
      }
      else{
	params.g[KLOOKUP(kx,ky,params.S)]=0;
      }
    }
  }


  // prepare vectors for fft
  fft_vects.fft1=fftw_malloc(sizeof(fftw_complex)*params.N*params.N);
  fft_vects.fft1_plan=fftw_plan_dft_2d((int)params.N,(int)params.N, fft_vects.fft1, fft_vects.fft1, FFTW_FORWARD, FFTW_MEASURE);
  fft_vects.fft2=fftw_malloc(sizeof(fftw_complex)*params.N*params.N);
  fft_vects.fft2_plan=fftw_plan_dft_2d((int)params.N,(int)params.N, fft_vects.fft2, fft_vects.fft2, FFTW_FORWARD, FFTW_MEASURE);
  fft_vects.invfft=fftw_malloc(sizeof(fftw_complex)*params.N*params.N);
  fft_vects.invfft_plan=fftw_plan_dft_2d((int)params.N,(int)params.N, fft_vects.invfft, fft_vects.invfft, FFTW_BACKWARD, FFTW_MEASURE);

  // init running average
  avg=0;

  // iterate
  for(t=0;t<Nsteps;t++){
    ins_step(u, params, fft_vects, tmp1, tmp2, tmp3);
    alpha=compute_alpha(u, params);
    
    /*
    // to avoid errors building up in imaginary part
    for(kx=-params.K;kx<=params.K;kx++){
      for(ky=-params.K;ky<=params.K;ky++){
	u[KLOOKUP(kx,ky,params.S)]=__real__ u[KLOOKUP(kx,ky,params.S)];
      }
    }
    */

    // running average
    if(t>0){
      avg=avg-(avg-alpha)/t;
    }

    if(t>0 && t%1000==0){
      fprintf(stderr,"% .15e % .15e % .15e % .15e % .15e\n",t*params.h, __real__ avg, __imag__ avg, __real__ alpha, __imag__ alpha);
      printf("% .15e % .15e % .15e % .15e % .15e\n",t*params.h, __real__ avg, __imag__ avg, __real__ alpha, __imag__ alpha);
    }
  }

  // free memory
  fftw_destroy_plan(fft_vects.fft1_plan);
  fftw_destroy_plan(fft_vects.fft2_plan);
  fftw_destroy_plan(fft_vects.invfft_plan);
  fftw_free(fft_vects.fft1);
  fftw_free(fft_vects.fft2);
  fftw_free(fft_vects.invfft);

  free(tmp3);
  free(tmp2);
  free(tmp1);
  free(params.g);
  free(u);

  return(0);
}