Ian Jauslin
summaryrefslogtreecommitdiff
blob: fa5fff04b44f2668eaa76d2f43828a7e3da66d91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
\documentclass{ian}

\usepackage{largearray}

\begin{document}

\hbox{}
\hfil{\bf\LARGE
{\tt nstrophy}
}
\vfill

\tableofcontents

\vfill
\eject

\setcounter{page}1
\pagestyle{plain}

\section{Description of the computation}
\subsection{Irreversible equation}
\indent Consider the {\it irreversible} Navier-Stokes equation in 2 dimensions
\begin{equation}
  \partial_tu=\nu\Delta u+g-\nabla w-(u\cdot\nabla)u,\quad
  \nabla\cdot u=0
  \label{ins}
\end{equation}
in which $g$ is the forcing term and $w$ is the pressure.
We take periodic boundary conditions, so, at every given time, $u(t,\cdot)$ is a function on the unit torus $\mathbb T^2:=\mathbb R^2/\mathbb Z^2$. We represent $u(t,\cdot)$ using its Fourier series
\begin{equation}
  \hat u_k(t):=\int_{\mathbb T^2}dx\ e^{2i\pi kx}u(t,x)
\end{equation}
for $k\in\mathbb Z^2$, and rewrite~\-(\ref{ins}) as
\begin{equation}
  \partial_t\hat u_k=
  -4\pi^2\nu k^2\hat u_k+\hat g_k-2i\pi k\hat w_k
  -2i\pi\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
  (q\cdot\hat u_p)\hat u_q
  ,\quad
  k\cdot\hat u_k=0
  \label{ins_k}
\end{equation}
We then reduce the equation to a scalar one, by writing
\begin{equation}
  \hat u_k=\frac{2i\pi k^\perp}{|k|}\hat\varphi_k\equiv\frac{2i\pi}{|k|}(-k_y\hat\varphi_k,k_x\hat\varphi_k)
\end{equation}
in terms of which, multiplying both sides of the equation by $\frac{k^\perp}{|k|}$,
\begin{equation}
  \partial_t\hat \varphi_k=
  -4\pi^2\nu k^2\hat \varphi_k+\frac{k^\perp}{2i\pi|k|}\cdot\hat g_k
  -\frac{2i\pi}{|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
  (q\cdot p^\perp)(k^\perp\cdot q^\perp)\hat\varphi_p\hat\varphi_q
  \label{ins_k}
\end{equation}
which, since $q\cdot p^\perp=q\cdot(k^\perp-q^\perp)=q\cdot k^\perp$, is
\begin{equation}
  \partial_t\hat \varphi_k=
  -4\pi^2\nu k^2\hat \varphi_k+\frac{k^\perp}{2i\pi|k|}\cdot\hat g_k
  +\frac{4\pi^2}{|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
  (q\cdot k^\perp)(k\cdot q)\frac{\hat\varphi_p\hat\varphi_q}{|p||q|}
  .
  \label{ins_k}
\end{equation}
We truncate the Fourier modes and assume that $\hat\varphi_k=0$ if $|k_1|>K_1$ or $|k_2|>K_2$. Let
\begin{equation}
  \mathcal K:=\{(k_1,k_2),\ |k_1|\leqslant K_1,\ |k_2|\leqslant K_2\}
  .
\end{equation}
\bigskip

\point{\bf FFT}. We compute the last term in~\-(\ref{ins_k})
\begin{equation}
  T(\hat\varphi,k):=
  \sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
  \frac{\hat\varphi_p}{|p|}
  (q\cdot k^\perp)(k\cdot q)\frac{\hat\varphi_q}{|q|}
\end{equation}
using a fast Fourier transform, defined as
\begin{equation}
  \mathcal F(f)(n):=\sum_{m\in\mathcal N}e^{-\frac{2i\pi}{N_1}m_1n_1-\frac{2i\pi}{N_2}m_2n_2}f(m_1,m_2)
\end{equation}
where
\begin{equation}
  \mathcal N:=\{(n_1,n_2),\ 0\leqslant n_1\leqslant N_1,\ 0\leqslant n_2\leqslant N_2\}
\end{equation}
for some fixed $N_1,N_2$. The transform is inverted by
\begin{equation}
  \frac1{N_1N_2}\mathcal F^*(\mathcal F(f))(n)=f(n)
\end{equation}
in which $\mathcal F^*$ is defined like $\mathcal F$ but with the opposite phase.
\bigskip

\indent The condition $p+q=k$ can be rewritten as
\begin{equation}
  T(\hat\varphi,k)
  =
  \sum_{p,q\in\mathcal K}
  \frac1{N_1N_2}
  \sum_{n\in\mathcal N}e^{-\frac{2i\pi}{N_1}n_1(p_1+q_1-k_1)-\frac{2i\pi}{N_2}n_2(p_2+q_2-k_2)}
  \frac{\hat\varphi_p}{|p|}
  (q\cdot k^\perp)(k\cdot q)\frac{\hat\varphi_q}{|q|}
\end{equation}
provided
\begin{equation}
  N_i>4K_i.
\end{equation}
Indeed, $\sum_{n_i=0}^{N_i}e^{-\frac{2i\pi}{N_i}n_im_i}$ vanishes unless $m_i=0\%N_i$ (in which $\%N_i$ means `modulo $N_i$'), and, if $p,q\in\mathcal K$, then $|p_i+q_i|\leqslant2K_i$. Therefore,
\begin{equation}
  T(\hat\varphi,k)
  =
  \frac1{N_1N_2}
  \mathcal F^*\left(
    \mathcal F(|p|^{-1}\hat\varphi_p)(n)
    \mathcal F((|q|^{-1}(q\cdot k^\perp)(k\cdot q)\hat\varphi_q)_q)(n)
  \right)(k)
\end{equation}
which we expand
\begin{equation}
  T(\hat\varphi,k)
  =
  \textstyle
  \frac{k_x^2-k_y^2}{N_1N_2}
  \mathcal F^*\left(
    \mathcal F\left(\frac{\hat\varphi_p}{|p|}\right)(n)
    \mathcal F\left(\frac{q_xq_y}{|q|}\hat\varphi_q\right)(n)
  \right)(k)
  -
  \frac{k_xk_y}{N_1N_2}
  \mathcal F^*\left(
    \mathcal F\left(\frac{\hat\varphi_p}{|p|}\right)(n)
    \mathcal F\left(\frac{q_x^2-q_y^2}{|q|}\hat\varphi_q\right)(n)
  \right)(k)
\end{equation}


\vfill
\eject

\begin{thebibliography}{WWW99}
\small
\IfFileExists{bibliography/bibliography.tex}{\input bibliography/bibliography.tex}{}
\end{thebibliography}


\end{document}