Ian Jauslin
summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorIan Jauslin <jauslin@ias.edu>2018-01-11 22:48:14 +0000
committerIan Jauslin <jauslin@ias.edu>2018-01-11 22:48:14 +0000
commit01f47ace6756c28deb9ea0daaee3904ffa5ce9e0 (patch)
tree5f17fab452c96c3df7ae5da8875d1178d461e79e /src
Initial commit
Diffstat (limited to 'src')
-rw-r--r--src/main.c282
-rw-r--r--src/navier-stokes.c299
-rw-r--r--src/navier-stokes.h48
3 files changed, 629 insertions, 0 deletions
diff --git a/src/main.c b/src/main.c
new file mode 100644
index 0000000..9420e90
--- /dev/null
+++ b/src/main.c
@@ -0,0 +1,282 @@
+#define VERSION "0.0"
+
+#include <math.h>
+#include <complex.h>
+#include <fftw3.h>
+#include <string.h>
+#include <stdlib.h>
+#include "navier-stokes.h"
+
+// usage message
+int print_usage();
+// read command line arguments
+int read_args(int argc, const char* argv[], ns_params* params, unsigned int* nsteps, unsigned int* computation_nr);
+
+// compute enstrophy as a function of time in the I-NS equation
+int enstrophy(ns_params params, unsigned int Nsteps);
+
+
+#define COMPUTATION_ENSTROPHY 1
+int main (int argc, const char* argv[]){
+ ns_params params;
+ unsigned int nsteps;
+ int ret;
+ unsigned int computation_nr;
+
+ // default computation: phase diagram
+ computation_nr=COMPUTATION_ENSTROPHY;
+
+ // read command line arguments
+ ret=read_args(argc, argv, &params, &nsteps, &computation_nr);
+ if(ret<0){
+ return(-1);
+ }
+ if(ret>0){
+ return(0);
+ }
+
+ // enstrophy
+ if(computation_nr==COMPUTATION_ENSTROPHY){
+ enstrophy(params, nsteps);
+ }
+
+ return(0);
+}
+
+// usage message
+int print_usage(){
+ fprintf(stderr, "usage:\n nstrophy enstrophy [-h timestep] [-K modes] [-v] [-N nsteps]\n\n nstrophy -V [-v]\n\n");
+ return(0);
+}
+
+// read command line arguments
+#define CP_FLAG_TIMESTEP 1
+#define CP_FLAG_NSTEPS 2
+#define CP_FLAG_MODES 2
+#define CP_FLAG_NU 3
+int read_args(int argc, const char* argv[], ns_params* params, unsigned int* nsteps, unsigned int* computation_nr){
+ int i;
+ int ret;
+ // temporary int
+ int tmp_int;
+ // temporary unsigned int
+ unsigned int tmp_uint;
+ // temporary double
+ double tmp_double;
+ // pointers
+ char* ptr;
+ // flag that indicates what argument is being read
+ int flag=0;
+ // print version and exit
+ char Vflag=0;
+
+ // defaults
+ /*
+ params->h=6.103515625e-05;
+ params->K=16;
+ *nsteps=16777216;
+ params->nu=4.9632717887631524e-05;
+ */
+ params->h=1e-5;
+ params->K=16;
+ *nsteps=10000000;
+ params->nu=1e-4;
+
+ // loop over arguments
+ for(i=1;i<argc;i++){
+ // flag
+ if(argv[i][0]=='-'){
+ for(ptr=((char*)argv[i])+1;*ptr!='\0';ptr++){
+ switch(*ptr){
+ // timestep
+ case 'h':
+ flag=CP_FLAG_TIMESTEP;
+ break;
+ // nsteps
+ case 'N':
+ flag=CP_FLAG_NSTEPS;
+ break;
+ // modes
+ case 'K':
+ flag=CP_FLAG_MODES;
+ break;
+ // friction
+ case 'n':
+ flag=CP_FLAG_NU;
+ break;
+ // print version
+ case 'V':
+ Vflag=1;
+ break;
+ default:
+ fprintf(stderr, "unrecognized option '-%c'\n", *ptr);
+ print_usage();
+ return(-1);
+ break;
+ }
+ }
+ }
+ // timestep
+ else if(flag==CP_FLAG_TIMESTEP){
+ ret=sscanf(argv[i],"%lf",&tmp_double);
+ if(ret!=1){
+ fprintf(stderr, "error: '-h' should be followed by a double\n got '%s'\n",argv[i]);
+ return(-1);
+ }
+ params->h=tmp_double;
+ flag=0;
+ }
+ // nsteps
+ else if(flag==CP_FLAG_NSTEPS){
+ ret=sscanf(argv[i],"%u",&tmp_uint);
+ if(ret!=1){
+ fprintf(stderr, "error: '-N' should be followed by an unsigned int\n got '%s'\n",argv[i]);
+ return(-1);
+ }
+ *nsteps=tmp_uint;
+ flag=0;
+ }
+ // nsteps
+ else if(flag==CP_FLAG_MODES){
+ ret=sscanf(argv[i],"%d",&tmp_int);
+ if(ret!=1){
+ fprintf(stderr, "error: '-K' should be followed by an int\n got '%s'\n",argv[i]);
+ return(-1);
+ }
+ params->K=tmp_uint;
+ flag=0;
+ }
+ // friction
+ else if(flag==CP_FLAG_TIMESTEP){
+ ret=sscanf(argv[i],"%lf",&tmp_double);
+ if(ret!=1){
+ fprintf(stderr, "error: '-n' should be followed by a double\n got '%s'\n",argv[i]);
+ return(-1);
+ }
+ params->nu=tmp_double;
+ flag=0;
+ }
+ // computation to run
+ else{
+ if(strcmp(argv[i], "enstrophy")==0){
+ *computation_nr=COMPUTATION_ENSTROPHY;
+ }
+ else{
+ fprintf(stderr, "error: unrecognized computation: '%s'\n",argv[i]);
+ print_usage();
+ return(-1);
+ }
+ flag=0;
+ }
+ }
+
+ // print version and exit
+ if(Vflag==1){
+ printf("nstrophy " VERSION "\n");
+ return(1);
+ }
+
+ return(0);
+}
+
+// compute enstrophy as a function of time in the I-NS equation
+int enstrophy(ns_params params, unsigned int Nsteps){
+ _Complex double* u;
+ _Complex double* tmp1;
+ _Complex double* tmp2;
+ _Complex double* tmp3;
+ _Complex double alpha;
+ _Complex double avg;
+ unsigned int t;
+ int kx,ky;
+ fft_vects fft_vects;
+
+ // sizes
+ params.S=2*params.K+1;
+ params.N=4*params.K+1;
+
+ // velocity field
+ u=calloc(sizeof(_Complex double),params.S*params.S);
+ params.g=calloc(sizeof(_Complex double),params.S*params.S);
+ // allocate tmp vectors for computation
+ tmp1=calloc(sizeof(_Complex double),params.S*params.S);
+ tmp2=calloc(sizeof(_Complex double),params.S*params.S);
+ tmp3=calloc(sizeof(_Complex double),params.S*params.S);
+
+ // initial value
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ //u[KLOOKUP(kx,ky,params.S)]=kx*kx*ky*ky*exp(-(kx*kx+ky*ky));
+ if((kx==1 && ky==0) || (kx==-1 && ky==0)){
+ u[KLOOKUP(kx,ky,params.S)]=1;
+ }
+ else{
+ u[KLOOKUP(kx,ky,params.S)]=0;
+ }
+ }
+ }
+
+ // driving force
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ //params.g[KLOOKUP(kx,ky,params.S)]=sqrt(kx*kx*ky*ky)*exp(-(kx*kx+ky*ky));
+ if((kx==2 && ky==-1) || (kx==-2 && ky==1)){
+ params.g[KLOOKUP(kx,ky,params.S)]=1;
+ }
+ else{
+ params.g[KLOOKUP(kx,ky,params.S)]=0;
+ }
+ }
+ }
+
+
+ // prepare vectors for fft
+ fft_vects.fft1=fftw_malloc(sizeof(fftw_complex)*params.N*params.N);
+ fft_vects.fft1_plan=fftw_plan_dft_2d((int)params.N,(int)params.N, fft_vects.fft1, fft_vects.fft1, FFTW_FORWARD, FFTW_MEASURE);
+ fft_vects.fft2=fftw_malloc(sizeof(fftw_complex)*params.N*params.N);
+ fft_vects.fft2_plan=fftw_plan_dft_2d((int)params.N,(int)params.N, fft_vects.fft2, fft_vects.fft2, FFTW_FORWARD, FFTW_MEASURE);
+ fft_vects.invfft=fftw_malloc(sizeof(fftw_complex)*params.N*params.N);
+ fft_vects.invfft_plan=fftw_plan_dft_2d((int)params.N,(int)params.N, fft_vects.invfft, fft_vects.invfft, FFTW_BACKWARD, FFTW_MEASURE);
+
+ // init running average
+ avg=0;
+
+ // iterate
+ for(t=0;t<Nsteps;t++){
+ ins_step(u, params, fft_vects, tmp1, tmp2, tmp3);
+ alpha=compute_alpha(u, params);
+
+ // to avoid errors building up in imaginary part
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ u[KLOOKUP(kx,ky,params.S)]=__real__ u[KLOOKUP(kx,ky,params.S)];
+ }
+ }
+
+ // running average
+ if(t>0){
+ avg=avg-(avg-alpha)/t;
+ }
+
+ if(t>0 && t%1000==0){
+ fprintf(stderr,"%8d % .8e % .8e % .8e % .8e\n",t, __real__ avg, __imag__ avg, __real__ alpha, __imag__ alpha);
+ printf("%8d % .8e % .8e % .8e % .8e\n",t, __real__ avg, __imag__ avg, __real__ alpha, __imag__ alpha);
+ }
+ }
+
+ // free memory
+ fftw_destroy_plan(fft_vects.fft1_plan);
+ fftw_destroy_plan(fft_vects.fft2_plan);
+ fftw_destroy_plan(fft_vects.invfft_plan);
+ fftw_free(fft_vects.fft1);
+ fftw_free(fft_vects.fft2);
+ fftw_free(fft_vects.invfft);
+
+ free(tmp3);
+ free(tmp2);
+ free(tmp1);
+ free(params.g);
+ free(u);
+
+ return(0);
+}
diff --git a/src/navier-stokes.c b/src/navier-stokes.c
new file mode 100644
index 0000000..3def963
--- /dev/null
+++ b/src/navier-stokes.c
@@ -0,0 +1,299 @@
+#include "navier-stokes.h"
+#include <math.h>
+
+#define M_PI 3.14159265358979323846
+
+#define CHK 1
+
+// next time step for Irreversible Navier-Stokes equation
+int ins_step(_Complex double* u, ns_params params, fft_vects vects, _Complex double* tmp1, _Complex double* tmp2, _Complex double* tmp3){
+ int kx,ky;
+
+ // k1
+ ins_rhs(tmp1, u, params, vects);
+ // add to output
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ tmp3[KLOOKUP(kx,ky,params.S)]=u[KLOOKUP(kx,ky,params.S)]+params.h/6*tmp1[KLOOKUP(kx,ky,params.S)];
+ }
+ }
+
+ // u+h*k1/2
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ tmp2[KLOOKUP(kx,ky,params.S)]=u[KLOOKUP(kx,ky,params.S)]+params.h/2*tmp1[KLOOKUP(kx,ky,params.S)];
+ }
+ }
+ // k2
+ ins_rhs(tmp1, tmp2, params, vects);
+ // add to output
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ tmp3[KLOOKUP(kx,ky,params.S)]+=params.h/3*tmp1[KLOOKUP(kx,ky,params.S)];
+ }
+ }
+
+ // u+h*k2/2
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ tmp2[KLOOKUP(kx,ky,params.S)]=u[KLOOKUP(kx,ky,params.S)]+params.h/2*tmp1[KLOOKUP(kx,ky,params.S)];
+ }
+ }
+ // k3
+ ins_rhs(tmp1, tmp2, params, vects);
+ // add to output
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ tmp3[KLOOKUP(kx,ky,params.S)]+=params.h/3*tmp1[KLOOKUP(kx,ky,params.S)];
+ }
+ }
+
+ // u+h*k3
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ tmp2[KLOOKUP(kx,ky,params.S)]=u[KLOOKUP(kx,ky,params.S)]+params.h*tmp1[KLOOKUP(kx,ky,params.S)];
+ }
+ }
+ // k4
+ ins_rhs(tmp1, tmp2, params, vects);
+ // add to output
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ u[KLOOKUP(kx,ky,params.S)]=tmp3[KLOOKUP(kx,ky,params.S)]+params.h/6*tmp1[KLOOKUP(kx,ky,params.S)];
+ }
+ }
+
+ return(0);
+}
+
+// right side of Irreversible Navier-Stokes equation
+int ins_rhs(_Complex double* out, _Complex double* u, ns_params params, fft_vects vects){
+ int kx,ky;
+
+#if CHK==0
+ // F(u/|p|)*F(q1*q2*u/|q|)
+ // init to 0
+ for(kx=0; kx<params.N*params.N; kx++){
+ vects.fft1[kx]=0;
+ vects.fft2[kx]=0;
+ vects.invfft[kx]=0;
+ }
+ // fill modes
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ if(kx!=0 || ky!=0){
+ vects.fft1[KLOOKUP(kx,ky,params.N)]=u[KLOOKUP(kx,ky,params.S)]/sqrt(kx*kx+ky*ky);
+ vects.fft2[KLOOKUP(kx,ky,params.N)]=kx*ky*u[KLOOKUP(kx,ky,params.S)]/sqrt(kx*kx+ky*ky);
+ }
+ }
+ }
+ // fft
+ fftw_execute(vects.fft1_plan);
+ fftw_execute(vects.fft2_plan);
+ // write to invfft
+ for(kx=-2*params.K;kx<=2*params.K;kx++){
+ for(ky=-2*params.K;ky<=2*params.K;ky++){
+ vects.invfft[KLOOKUP(kx,ky,params.N)]=vects.fft1[KLOOKUP(kx,ky,params.N)]*vects.fft2[KLOOKUP(kx,ky,params.N)];
+ }
+ }
+ // inverse fft
+ fftw_execute(vects.invfft_plan);
+
+ // write out
+ for(kx=0; kx<params.S*params.S; kx++){
+ out[kx]=0;
+ }
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ if(kx!=0 || ky!=0){
+ out[KLOOKUP(kx,ky,params.S)]=-4*M_PI*M_PI*params.nu*(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)]+params.g[KLOOKUP(kx,ky,params.S)]+4*M_PI*M_PI/sqrt(kx*kx+ky*ky)*vects.invfft[KLOOKUP(kx,ky,params.N)]*(kx*kx-ky*ky)/params.N/params.N;
+ }
+ }
+ }
+
+ // F(u/|p|)*F((q1*q1-q2*q2)*u/|q|)
+ // init to 0
+ for(kx=0; kx<params.N*params.N; kx++){
+ vects.fft2[kx]=0;
+ vects.invfft[kx]=0;
+ }
+ // fill modes
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ if(kx!=0 || ky!=0){
+ vects.fft2[KLOOKUP(kx,ky,params.N)]=(kx*kx-ky*ky)*u[KLOOKUP(kx,ky,params.S)]/sqrt(kx*kx+ky*ky);
+ }
+ }
+ }
+ // fft
+ fftw_execute(vects.fft2_plan);
+ // write to invfft
+ for(kx=-2*params.K;kx<=2*params.K;kx++){
+ for(ky=-2*params.K;ky<=2*params.K;ky++){
+ vects.invfft[KLOOKUP(kx,ky,params.N)]=vects.fft1[KLOOKUP(kx,ky,params.N)]*vects.fft2[KLOOKUP(kx,ky,params.N)];
+ }
+ }
+ // inverse fft
+ fftw_execute(vects.invfft_plan);
+
+ // write out
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ if(kx!=0 || ky!=0){
+ out[KLOOKUP(kx,ky,params.S)]=out[KLOOKUP(kx,ky,params.S)]-4*M_PI*M_PI/sqrt(kx*kx+ky*ky)*vects.invfft[KLOOKUP(kx,ky,params.N)]*(kx*ky)/params.N/params.N;
+ }
+ }
+ }
+#elif CHK == 1
+ // F(-p2/|p|*u)*F(q1*|q|*u)
+ // init to 0
+ for(kx=0; kx<params.N*params.N; kx++){
+ vects.fft1[kx]=0;
+ vects.fft2[kx]=0;
+ vects.invfft[kx]=0;
+ }
+ // fill modes
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ if(kx!=0 || ky!=0){
+ vects.fft1[KLOOKUP(kx,ky,params.N)]=-kx/sqrt(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)];
+ vects.fft2[KLOOKUP(kx,ky,params.N)]=kx*sqrt(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)];
+ }
+ }
+ }
+ // fft
+ fftw_execute(vects.fft1_plan);
+ fftw_execute(vects.fft2_plan);
+ // write to invfft
+ for(kx=-2*params.K;kx<=2*params.K;kx++){
+ for(ky=-2*params.K;ky<=2*params.K;ky++){
+ vects.invfft[KLOOKUP(kx,ky,params.N)]=vects.fft1[KLOOKUP(kx,ky,params.N)]*vects.fft2[KLOOKUP(kx,ky,params.N)] - vects.fft1[KLOOKUP(ky,kx,params.N)]*vects.fft2[KLOOKUP(ky,kx,params.N)];
+ }
+ }
+
+ // inverse fft
+ fftw_execute(vects.invfft_plan);
+
+
+ // write out
+ for(kx=0; kx<params.S*params.S; kx++){
+ out[kx]=0;
+ }
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ if(kx!=0 || ky!=0){
+ out[KLOOKUP(kx,ky,params.S)]=-4*M_PI*M_PI*params.nu/params.S*(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)]+params.g[KLOOKUP(kx,ky,params.S)]+2*M_PI/sqrt(kx*kx+ky*ky)/params.S*vects.invfft[KLOOKUP(kx,ky,params.N)]/params.N/params.N;
+ }
+ }
+ }
+
+#elif CHK==2
+ // F(u)*F(q1*u)
+ // init to 0
+ for(kx=0; kx<params.N*params.N; kx++){
+ vects.fft1[kx]=0;
+ vects.fft2[kx]=0;
+ vects.invfft[kx]=0;
+ }
+ // fill modes
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ // u_k
+ vects.fft1[KLOOKUP(kx,ky,params.N)]=u[KLOOKUP(kx,ky,params.S)];
+ // 2i\pi k_x u_k
+ vects.fft2[KLOOKUP(kx,ky,params.N)]=2*M_PI*I*kx*u[KLOOKUP(kx,ky,params.S)];
+ }
+ }
+ // fft
+ fftw_execute(vects.fft1_plan);
+ fftw_execute(vects.fft2_plan);
+ // write to invfft
+ for(kx=-2*params.K;kx<=2*params.K;kx++){
+ for(ky=-2*params.K;ky<=2*params.K;ky++){
+ vects.invfft[KLOOKUP(kx,ky,params.N)]=vects.fft1[KLOOKUP(kx,ky,params.N)]*vects.fft2[KLOOKUP(kx,ky,params.N)];
+ }
+ }
+
+ // F(p1/p2*u)*F(q2*u)
+ // init to 0
+ for(kx=0; kx<params.N*params.N; kx++){
+ vects.fft1[kx]=0;
+ vects.fft2[kx]=0;
+ }
+ // fill modes
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ // k_x/k_y u_k
+ if(ky!=0){
+ vects.fft1[KLOOKUP(kx,ky,params.N)]=kx/ky*u[KLOOKUP(kx,ky,params.S)];
+ }
+ // 2i\pi k_y u_k
+ vects.fft2[KLOOKUP(kx,ky,params.N)]=2*M_PI*I*ky*u[KLOOKUP(kx,ky,params.S)];
+ }
+ }
+ // fft
+ fftw_execute(vects.fft1_plan);
+ fftw_execute(vects.fft2_plan);
+ // write to invfft
+ for(kx=-2*params.K;kx<=2*params.K;kx++){
+ for(ky=-2*params.K;ky<=2*params.K;ky++){
+ vects.invfft[KLOOKUP(kx,ky,params.N)]+=-vects.fft1[KLOOKUP(kx,ky,params.N)]*vects.fft2[KLOOKUP(kx,ky,params.N)];
+ }
+ }
+
+ // inverse fft
+ fftw_execute(vects.invfft_plan);
+
+ /*
+ // check: convolution instead of fft
+ for(kx=0; kx<params.S*params.S; kx++){
+ out[kx]=0;
+ }
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ for(px=-params.K;px<=params.K;px++){
+ for(py=-params.K;py<=params.K;py++){
+ if(kx-px<=params.K && kx-px>=-params.K && ky-py<=params.K && ky-py>=-params.K){
+ out[KLOOKUP(kx,ky,params.S)]+=2*M_PI*I*(u[KLOOKUP(px,py,params.S)]*(kx-px)*u[KLOOKUP(kx-px,ky-py,params.S)]-(py==0?0:px/py*u[KLOOKUP(px,py,params.S)]*(ky-py)*u[KLOOKUP(kx-px,ky-py,params.S)]));
+ }
+ }
+ }
+ dd=(__real__ vects.invfft[KLOOKUP(kx,ky,params.N)]/params.N/params.N-__real__ out[KLOOKUP(kx,ky,params.S)])*(__real__ vects.invfft[KLOOKUP(kx,ky,params.N)]/params.N/params.N-__real__ out[KLOOKUP(kx,ky,params.S)])+(__imag__ vects.invfft[KLOOKUP(kx,ky,params.N)]/params.N/params.N-__imag__ out[KLOOKUP(kx,ky,params.S)])*(__imag__ vects.invfft[KLOOKUP(kx,ky,params.N)]/params.N/params.N-__imag__ out[KLOOKUP(kx,ky,params.S)]);
+ if(dd>1e-25){
+ printf("%d %d % .8e\n",kx,ky, dd);
+ }
+ }
+ }
+ */
+
+
+ // write out
+ for(kx=0; kx<params.S*params.S; kx++){
+ out[kx]=0;
+ }
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ out[KLOOKUP(kx,ky,params.S)]=-4*M_PI*M_PI*params.nu*(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)]+params.g[KLOOKUP(kx,ky,params.S)]+vects.invfft[KLOOKUP(kx,ky,params.N)]/params.N/params.N;
+ }
+ }
+
+#endif
+ return(0);
+}
+
+
+// compute alpha
+_Complex double compute_alpha(_Complex double* u, ns_params params){
+ _Complex double num=0;
+ _Complex double denom=0;
+ int kx,ky;
+
+ for(kx=-params.K;kx<=params.K;kx++){
+ for(ky=-params.K;ky<=params.K;ky++){
+ denom+=(kx*kx+ky*ky)*(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)]*conj(u[KLOOKUP(kx,ky,params.S)])*(1+(ky!=0?kx*kx/ky/ky:0));
+ num+=(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)]*conj(params.g[KLOOKUP(kx,ky,params.S)])*(1+(ky!=0?kx*kx/ky/ky:0));
+ }
+ }
+
+ return(num/denom);
+}
diff --git a/src/navier-stokes.h b/src/navier-stokes.h
new file mode 100644
index 0000000..cd093d7
--- /dev/null
+++ b/src/navier-stokes.h
@@ -0,0 +1,48 @@
+#ifndef NAVIERSTOKES_H
+#define NAVIERSTOKES_H
+
+#include <complex.h>
+#include <fftw3.h>
+
+// to extract elements from array of size S representing a function of momentum, use
+// array[KEXTRACT(kx,ky,size)]
+#define KLOOKUP(X,Y,S) (X>=0?X:S+X)*S+(Y>=0?Y:S+Y)
+
+
+// parameters for the NS equation
+typedef struct ns_params {
+ // number of modes
+ int K;
+ // 2*K+1
+ int S;
+ // 4*K+1
+ int N;
+ // forcing term
+ _Complex double* g;
+ // time step
+ double h;
+ // friction
+ double nu;
+} ns_params;
+
+// arrays on which the ffts are performed
+typedef struct fft_vects {
+ fftw_complex* fft1;
+ fftw_complex* fft2;
+ fftw_complex* invfft;
+ fftw_plan fft1_plan;
+ fftw_plan fft2_plan;
+ fftw_plan invfft_plan;
+} fft_vects;
+
+// next time step for Irreversible Navier-Stokes equation
+int ins_step(_Complex double* u, ns_params params, fft_vects vects, _Complex double* tmp1, _Complex double* tmp2, _Complex double* tmp3);
+
+// right side of Irreversible Navier-Stokes equation
+int ins_rhs(_Complex double* out, _Complex double* u, ns_params params, fft_vects vects);
+
+// compute alpha
+_Complex double compute_alpha(_Complex double* u, ns_params params);
+
+#endif
+