Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorIan Jauslin <ian.jauslin@rutgers.edu>2023-04-11 17:08:06 -0400
committerIan Jauslin <ian.jauslin@rutgers.edu>2023-04-11 17:08:06 -0400
commitbca217e69837e2ecb788511b786f4adc9a74769e (patch)
treec8fc42915dcae7f0ee8d661c13dd3e0d2f7b446e /docs/nstrophy_doc.tex
parentd096cbb1007449c2847b93279ea7a476eed135c3 (diff)
Remove extraneous directory in doc
Diffstat (limited to 'docs/nstrophy_doc.tex')
-rw-r--r--docs/nstrophy_doc.tex336
1 files changed, 336 insertions, 0 deletions
diff --git a/docs/nstrophy_doc.tex b/docs/nstrophy_doc.tex
new file mode 100644
index 0000000..54e802e
--- /dev/null
+++ b/docs/nstrophy_doc.tex
@@ -0,0 +1,336 @@
+\documentclass{ian}
+
+\usepackage{largearray}
+
+\begin{document}
+
+\hbox{}
+\hfil{\bf\LARGE
+{\tt nstrophy}
+}
+\vfill
+
+\tableofcontents
+
+\vfill
+\eject
+
+\setcounter{page}1
+\pagestyle{plain}
+
+\section{Description of the computation}
+\subsection{Irreversible equation}
+\indent Consider the incompressible Navier-Stokes equation in 2 dimensions
+\begin{equation}
+ \partial_tU=\nu\Delta U+G-(U\cdot\nabla)U,\quad
+ \nabla\cdot U=0
+ \label{ins}
+\end{equation}
+in which $G$ is the forcing term.
+We take periodic boundary conditions, so, at every given time, $U(t,\cdot)$ is a function on the torus $\mathbb T^2:=\mathbb R^2/(L\mathbb Z)^2$. We represent $U(t,\cdot)$ using its Fourier series
+\begin{equation}
+ \hat U_k(t):=\frac1{L^2}\int_{\mathbb T^2}dx\ e^{i\frac{2\pi}L kx}U(t,x)
+\end{equation}
+for $k\in\mathbb Z^2$, and rewrite~\-(\ref{ins}) as
+\begin{equation}
+ \partial_t\hat U_k=
+ -\frac{4\pi^2}{L^2}\nu k^2\hat U_k+\hat G_k
+ -i\frac{2\pi}L\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
+ (q\cdot\hat U_p)\hat U_q
+ ,\quad
+ k\cdot\hat U_k=0
+ \label{ins_k}
+\end{equation}
+We then reduce the equation to a scalar one, by writing
+\begin{equation}
+ \hat U_k=\frac{i2\pi k^\perp}{L|k|}\hat u_k\equiv\frac{i2\pi}{L|k|}(-k_y\hat u_k,k_x\hat u_k)
+ \label{udef}
+\end{equation}
+in terms of which, multiplying both sides of the equation by $\frac L{i2\pi}\frac{k^\perp}{|k|}$,
+\begin{equation}
+ \partial_t\hat u_k=
+ -\frac{4\pi^2}{L^2}\nu k^2\hat u_k
+ +\hat g_k
+ +\frac{4\pi^2}{L^2|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
+ \frac{(q\cdot p^\perp)(k^\perp\cdot q^\perp)}{|q||p|}\hat u_p\hat u_q
+ \label{ins_k}
+\end{equation}
+with
+\begin{equation}
+ \hat g_k:=\frac{Lk^\perp}{2i\pi|k|}\cdot\hat G_k
+ .
+ \label{gdef}
+\end{equation}
+Furthermore
+\begin{equation}
+ (q\cdot p^\perp)(k^\perp\cdot q^\perp)
+ =
+ (q\cdot p^\perp)(q^2+p\cdot q)
+\end{equation}
+and $q\cdot p^\perp$ is antisymmetric under exchange of $q$ and $p$. Therefore,
+\begin{equation}
+ \partial_t\hat u_k=
+ -\frac{4\pi^2}{L^2}\nu k^2\hat u_k+\hat g_k
+ +\frac{4\pi^2}{L^2|k|}T(\hat u,k)
+ \label{ins_k}
+\end{equation}
+with
+\begin{equation}
+ T(\hat u,k):=
+ \sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
+ \frac{(q\cdot p^\perp)|q|}{|p|}\hat u_p\hat u_q
+ .
+ \label{T}
+\end{equation}
+We truncate the Fourier modes and assume that $\hat u_k=0$ if $|k_1|>K_1$ or $|k_2|>K_2$. Let
+\begin{equation}
+ \mathcal K:=\{(k_1,k_2),\ |k_1|\leqslant K_1,\ |k_2|\leqslant K_2\}
+ .
+\end{equation}
+\bigskip
+
+\point{\bf Reality}.
+Since $U$ is real, $\hat U_{-k}=\hat U_k^*$, and so
+\begin{equation}
+ \hat u_{-k}=\hat u_k^*
+ .
+ \label{realu}
+\end{equation}
+Similarly,
+\begin{equation}
+ \hat g_{-k}=\hat g_k^*
+ .
+ \label{realg}
+\end{equation}
+Thus,
+\begin{equation}
+ T(\hat u,-k)
+ =
+ T(\hat u,k)^*
+ .
+ \label{realT}
+\end{equation}
+\bigskip
+
+\point{\bf FFT}. We compute T using a fast Fourier transform, defined as
+\begin{equation}
+ \mathcal F(f)(n):=\sum_{m\in\mathcal N}e^{-\frac{2i\pi}{N_1}m_1n_1-\frac{2i\pi}{N_2}m_2n_2}f(m_1,m_2)
+\end{equation}
+where
+\begin{equation}
+ \mathcal N:=\{(n_1,n_2),\ 0\leqslant n_1< N_1,\ 0\leqslant n_2< N_2\}
+\end{equation}
+for some fixed $N_1,N_2$. The transform is inverted by
+\begin{equation}
+ \frac1{N_1N_2}\mathcal F^*(\mathcal F(f))(n)=f(n)
+\end{equation}
+in which $\mathcal F^*$ is defined like $\mathcal F$ but with the opposite phase.
+\bigskip
+
+\indent The condition $p+q=k$ can be rewritten as
+\begin{equation}
+ T(\hat u,k)
+ =
+ \sum_{p,q\in\mathcal K}
+ \frac1{N_1N_2}
+ \sum_{n\in\mathcal N}e^{-\frac{2i\pi}{N_1}n_1(p_1+q_1-k_1)-\frac{2i\pi}{N_2}n_2(p_2+q_2-k_2)}
+ (q\cdot p^\perp)\frac{|q|}{|p|}\hat u_q\hat u_p
+\end{equation}
+provided
+\begin{equation}
+ N_i>3K_i.
+\end{equation}
+Indeed, $\sum_{n_i=0}^{N_i}e^{-\frac{2i\pi}{N_i}n_im_i}$ vanishes unless $m_i=0\%N_i$ (in which $\%N_i$ means `modulo $N_i$'), and, if $p,q,k\in\mathcal K$, then $|p_i+q_i-k_i|\leqslant3K_i$, so, as long as $N_i>3K_i$, then $(p_i+q_i-k_i)=0\%N_i$ implies $p_i+q_i=k_i$.
+Therefore,
+\begin{equation}
+ T(\hat u,k)
+ =
+ \textstyle
+ \frac1{N_1N_2}
+ \mathcal F^*\left(
+ \mathcal F\left(\frac{p_x\hat u_p}{|p|}\right)(n)
+ \mathcal F\left(q_y|q|\hat u_q\right)(n)
+ -
+ \mathcal F\left(\frac{p_y\hat u_p}{|p|}\right)(n)
+ \mathcal F\left(q_x|q|\hat u_q\right)(n)
+ \right)(k)
+\end{equation}
+\bigskip
+
+\point{\bf Energy}.
+We define the energy as
+\begin{equation}
+ E(t)=\frac12\int\frac{dx}{L^2}\ U^2(t,x)=\frac12\sum_{k\in\mathbb Z^2}|\hat U_k|^2
+ .
+\end{equation}
+We have
+\begin{equation}
+ \partial_t E=\int\frac{dx}{L^2}\ U\partial tU
+ =
+ \nu\int\frac{dx}{L^2}\ U\Delta U
+ +\int\frac{dx}{L^2}\ UG
+ -\int\frac{dx}{L^2}\ U(U\cdot\nabla)U
+ .
+\end{equation}
+Since we have periodic boundary conditions,
+\begin{equation}
+ \int dx\ U\Delta U=-\int dx\ |\nabla U|^2
+ .
+\end{equation}
+Furthermore,
+\begin{equation}
+ I:=\int dx\ U(U\cdot\nabla)U
+ =\sum_{i,j=1,2}\int dx\ U_iU_j\partial_jU_i
+ =
+ -\sum_{i,j=1,2}\int dx\ (\partial_jU_i)U_jU_i
+ -\sum_{i,j=1,2}\int dx\ U_i(\partial_jU_j)U_i
+\end{equation}
+and since $\nabla\cdot U=0$,
+\begin{equation}
+ I
+ =
+ -I
+\end{equation}
+and so $I=0$.
+Thus,
+\begin{equation}
+ \partial_t E=
+ \int\frac{dx}{L^2}\ \left(-\nu|\nabla U|^2+UG\right)
+ =
+ \sum_{k\in\mathbb Z^2}\left(-\frac{4\pi^2}{L^2}\nu k^2|\hat U_k|^2+\hat U_{-k}\hat G_k\right)
+ .
+\end{equation}
+Furthermore,
+\begin{equation}
+ \sum_{k\in\mathbb Z^2}k^2|\hat U_k|^2\geqslant
+ \sum_{k\in\mathbb Z^2}|\hat U_k|^2-|\hat U_0|^2
+ =2E-|\hat U_0|^2
+\end{equation}
+so
+\begin{equation}
+ \partial_t E\leqslant -\frac{8\pi^2}{L^2}\nu E+\frac{4\pi^2}{L^2}\nu\hat U_0^2+\sum_{k\in\mathbb Z^2}\hat U_{-k}\hat G_k
+ \leqslant
+ -\frac{8\pi^2}{L^2}\nu E+\frac{4\pi^2}{L^2}\nu\hat U_0^2+
+ \|\hat G\|_2\sqrt{2E}
+ .
+\end{equation}
+In particular, if $\hat U_0=0$ (which corresponds to keeping the center of mass fixed),
+\begin{equation}
+ \partial_t E\leqslant -\frac{8\pi^2}{L^2}\nu E+\|\hat G\|_2\sqrt{2E}
+ .
+\end{equation}
+Now, if $\frac{8\pi^2}{L^2}\nu\sqrt E<\sqrt2\|\hat G\|_2$, then
+\begin{equation}
+ \frac{\partial_t E}{-\frac{8\pi^2}{L^2}\nu E+\|\hat G\|_2\sqrt{2E}}\leqslant1
+\end{equation}
+and so
+\begin{equation}
+ \frac{\log(1-\frac{8\pi^2\nu}{L^2\sqrt2\|\hat G\|_2}\sqrt{E(t)})}{-\frac{4\pi^2}{L^2}\nu}\leqslant t+
+ \frac{\log(1-\frac{8\pi^2\nu}{L^2\sqrt2\|\hat G\|_2}\sqrt{E(0)})}{-\frac{4\pi^2}{L^2}\nu}
+\end{equation}
+and
+\begin{equation}
+ E(t)
+ \leqslant
+ \left(
+ \frac{L^2\sqrt2\|\hat G\|_2}{8\pi^2\nu}(1-e^{-\frac{4\pi^2}{L^2}\nu t})
+ +e^{-\frac{4\pi^2}{L^2}\nu t}\sqrt{E(0)}
+ \right)^2
+ .
+\end{equation}
+If $\frac{8\pi^2}{L^2}\nu\sqrt E>\sqrt2\|\hat G\|_2$,
+\begin{equation}
+ \frac{\partial_t E}{-\frac{8\pi^2}{L^2}\nu E+\|\hat G\|_2\sqrt{2E}}\geqslant1
+\end{equation}
+and so
+\begin{equation}
+ \frac{\log(\frac{8\pi^2\nu}{L^2\sqrt2\|\hat G\|_2}\sqrt{E(t)}-1)}{-\frac{4\pi^2}{L^2}\nu}\geqslant t+
+ \frac{\log(\frac{8\pi^2\nu}{L^2\sqrt2\|\hat G\|_2}\sqrt{E(0)})-1}{-\frac{4\pi^2}{L^2}\nu}
+\end{equation}
+and
+\begin{equation}
+ E(t)
+ \leqslant
+ \left(
+ \frac{L^2\sqrt2\|\hat G\|_2}{8\pi^2\nu}(1-e^{-\frac{4\pi^2}{L^2}\nu t})
+ +e^{-\frac{4\pi^2}{L^2}\nu t}\sqrt{E(0)}
+ \right)^2
+ .
+\end{equation}
+\bigskip
+
+\point{\bf Enstrophy}.
+The enstrophy is defined as
+\begin{equation}
+ \mathcal En(t)=\int\frac{dx}{L^2}\ |\nabla U|^2
+ =\frac{4\pi^2}{L^2}\sum_{k\in\mathbb Z^2}k^2|\hat U_k|^2
+ .
+\end{equation}
+\bigskip
+
+\point{\bf Numerical instability}.
+In order to prevent the algorithm from blowing up, it is necessary to impose the reality of $u(x)$ by hand, otherwise, truncation errors build up, and lead to divergences.
+It is sufficient to ensure that the convolution term $T(\hat u,k)$ satisfies $T(\hat u,-k)=T(\hat u,k)^*$.
+After imposing this condition, the algorithm no longer blows up, but it is still unstable (for instance, increasing $K_1$ or $K_2$ leads to very different results).
+
+\subsection{Reversible equation}
+\indent The reversible equation is similar to\-~(\ref{ins}) but instead of fixing the viscosity, we fix the enstrophy\-~\cite{Ga22}.
+It is defined directly in Fourier space:
+\begin{equation}
+ \partial_t\hat U_k=
+ -\frac{4\pi^2}{L^2}\alpha(\hat U) k^2\hat U_k+\hat G_k
+ -i\frac{2\pi}L\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
+ (q\cdot\hat U_p)\hat U_q
+ ,\quad
+ k\cdot\hat U_k=0
+\end{equation}
+where $\alpha$ is chosen such that the enstrophy is constant.
+In terms of $\hat u$\-~(\ref{udef}), (\ref{gdef}), (\ref{T}):
+\begin{equation}
+ \partial_t\hat u_k=
+ -\frac{4\pi^2}{L^2}\alpha(\hat u) k^2\hat u_k
+ +\hat g_k
+ +\frac{4\pi^2}{L^2|k|}T(\hat u,k)
+ .
+ \label{rns_k}
+\end{equation}
+To compute $\alpha$, we use the constancy of the enstrophy:
+\begin{equation}
+ \sum_{k\in\mathbb Z^2}k^2\hat U_k\cdot\partial_t\hat U_k
+ =0
+\end{equation}
+which, in terms of $\hat u$ is
+\begin{equation}
+ \sum_{k\in\mathbb Z^2}k^2\hat u_k^*\partial_t\hat u_k
+ =0
+\end{equation}
+that is
+\begin{equation}
+ \frac{4\pi^2}{L^2}\alpha(\hat u)\sum_{k\in\mathbb Z^2}k^4|\hat u_k|^2
+ =
+ \sum_{k\in\mathbb Z^2}k^2\hat u_k^*\hat g_k
+ +\frac{4\pi^2}{L^2}\sum_{k\in\mathbb Z^2}|k|\hat u_k^*T(\hat u,k)
+\end{equation}
+and so
+\begin{equation}
+ \alpha(\hat u)
+ =\frac{\frac{L^2}{4\pi^2}\sum_k k^2\hat u_k^*\hat g_k+\sum_k|k|\hat u_k^*T(\hat u,k)}{\sum_kk^4|\hat u_k|^2}
+ .
+\end{equation}
+Note that, by\-~(\ref{realu})-(\ref{realT}),
+\begin{equation}
+ \alpha(\hat u)\in\mathbb R
+ .
+\end{equation}
+
+
+
+\vfill
+\eject
+
+\begin{thebibliography}{WWW99}
+\small
+\IfFileExists{bibliography/bibliography.tex}{\input bibliography/bibliography.tex}{}
+\end{thebibliography}
+
+\end{document}