Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorIan Jauslin <ian.jauslin@rutgers.edu>2023-03-31 15:40:15 -0400
committerIan Jauslin <ian.jauslin@rutgers.edu>2023-03-31 15:40:15 -0400
commitd69f386547d6f1170a9d6f49a14e3e914cf6f8e3 (patch)
tree03df5c2e119a04834bf33cb7e6e5446bcca77f92
parent5ce414db85c1e1701d500c08be6cde1d34b2f5a7 (diff)
Doc: reversible equation
-rw-r--r--docs/nstrophy_doc/bibliography/conf.BBlog1
-rw-r--r--docs/nstrophy_doc/nstrophy_doc.tex177
2 files changed, 117 insertions, 61 deletions
diff --git a/docs/nstrophy_doc/bibliography/conf.BBlog b/docs/nstrophy_doc/bibliography/conf.BBlog
index d1c22bc..abe5ad4 100644
--- a/docs/nstrophy_doc/bibliography/conf.BBlog
+++ b/docs/nstrophy_doc/bibliography/conf.BBlog
@@ -3,3 +3,4 @@ out_file: bibliography.tex
filter:auth: s/([A-Z])[^, ]* /\1. /g; s/ ([^ ,]*),/_\1,_/g; s/ ([^ ,]*)$/_\1/g; s/ //g; s/_/ /g;
filter:journal: s/([a-zA-Z]) ([0-9]+)/\1~\\-\2/g;
aux_cmd: \\citation{
+extra: Gallavotti2022:Ga22:Ga22:\bibitem[%token%]{%citeref%}G.\-~Gallavotti - {\it Navier-Stokes and equivalence conjectures}, preprint, 2022\par\penalty10000%n%arxiv:{\tt\color{blue}\href{https://arxiv.org/abs/2211.02961}{2211.02961}}%n%%n%
diff --git a/docs/nstrophy_doc/nstrophy_doc.tex b/docs/nstrophy_doc/nstrophy_doc.tex
index 35c42ec..ae571ef 100644
--- a/docs/nstrophy_doc/nstrophy_doc.tex
+++ b/docs/nstrophy_doc/nstrophy_doc.tex
@@ -22,38 +22,45 @@
\subsection{Irreversible equation}
\indent Consider the incompressible Navier-Stokes equation in 2 dimensions
\begin{equation}
- \partial_tu=\nu\Delta u+g-(u\cdot\nabla)u,\quad
- \nabla\cdot u=0
+ \partial_tU=\nu\Delta U+G-(U\cdot\nabla)U,\quad
+ \nabla\cdot U=0
\label{ins}
\end{equation}
-in which $g$ is the forcing term and $w$ is the pressure.
-We take periodic boundary conditions, so, at every given time, $u(t,\cdot)$ is a function on the torus $\mathbb T^2:=\mathbb R^2/(L\mathbb Z)^2$. We represent $u(t,\cdot)$ using its Fourier series
+in which $G$ is the forcing term.
+We take periodic boundary conditions, so, at every given time, $U(t,\cdot)$ is a function on the torus $\mathbb T^2:=\mathbb R^2/(L\mathbb Z)^2$. We represent $U(t,\cdot)$ using its Fourier series
\begin{equation}
- \hat u_k(t):=\frac1{L^2}\int_{\mathbb T^2}dx\ e^{i\frac{2\pi}L kx}u(t,x)
+ \hat U_k(t):=\frac1{L^2}\int_{\mathbb T^2}dx\ e^{i\frac{2\pi}L kx}U(t,x)
\end{equation}
for $k\in\mathbb Z^2$, and rewrite~\-(\ref{ins}) as
\begin{equation}
- \partial_t\hat u_k=
- -\frac{4\pi^2}{L^2}\nu k^2\hat u_k+\hat g_k
+ \partial_t\hat U_k=
+ -\frac{4\pi^2}{L^2}\nu k^2\hat U_k+\hat G_k
-i\frac{2\pi}L\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
- (q\cdot\hat u_p)\hat u_q
+ (q\cdot\hat U_p)\hat U_q
,\quad
- k\cdot\hat u_k=0
+ k\cdot\hat U_k=0
\label{ins_k}
\end{equation}
We then reduce the equation to a scalar one, by writing
\begin{equation}
- \hat u_k=\frac{i2\pi k^\perp}{L|k|}\hat\varphi_k\equiv\frac{i2\pi}{L|k|}(-k_y\hat\varphi_k,k_x\hat\varphi_k)
+ \hat U_k=\frac{i2\pi k^\perp}{L|k|}\hat u_k\equiv\frac{i2\pi}{L|k|}(-k_y\hat u_k,k_x\hat u_k)
+ \label{udef}
\end{equation}
in terms of which, multiplying both sides of the equation by $\frac L{i2\pi}\frac{k^\perp}{|k|}$,
\begin{equation}
- \partial_t\hat \varphi_k=
- -\frac{4\pi^2}{L^2}\nu k^2\hat \varphi_k+\frac{Lk^\perp}{2i\pi|k|}\cdot\hat g_k
+ \partial_t\hat u_k=
+ -\frac{4\pi^2}{L^2}\nu k^2\hat u_k
+ +\hat g_k
+\frac{4\pi^2}{L^2|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
- \frac{(q\cdot p^\perp)(k^\perp\cdot q^\perp)}{|q||p|}\hat\varphi_p\hat\varphi_q
- .
+ \frac{(q\cdot p^\perp)(k^\perp\cdot q^\perp)}{|q||p|}\hat u_p\hat u_q
\label{ins_k}
\end{equation}
+with
+\begin{equation}
+ \hat g_k:=\frac{Lk^\perp}{2i\pi|k|}\cdot\hat G_k
+ .
+ \label{gdef}
+\end{equation}
Furthermore
\begin{equation}
(q\cdot p^\perp)(k^\perp\cdot q^\perp)
@@ -62,14 +69,14 @@ Furthermore
\end{equation}
and $q\cdot p^\perp$ is antisymmetric under exchange of $q$ and $p$. Therefore,
\begin{equation}
- \partial_t\hat \varphi_k=
- -\frac{4\pi^2}{L^2}\nu k^2\hat \varphi_k+\frac{Lk^\perp}{2i\pi|k|}\cdot\hat g_k
+ \partial_t\hat u_k=
+ -\frac{4\pi^2}{L^2}\nu k^2\hat u_k+\hat g_k
+\frac{4\pi^2}{L^2|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
- \frac{(q\cdot p^\perp)|q|}{|p|}\hat\varphi_p\hat\varphi_q
+ \frac{(q\cdot p^\perp)|q|}{|p|}\hat u_p\hat u_q
.
\label{ins_k}
\end{equation}
-We truncate the Fourier modes and assume that $\hat\varphi_k=0$ if $|k_1|>K_1$ or $|k_2|>K_2$. Let
+We truncate the Fourier modes and assume that $\hat u_k=0$ if $|k_1|>K_1$ or $|k_2|>K_2$. Let
\begin{equation}
\mathcal K:=\{(k_1,k_2),\ |k_1|\leqslant K_1,\ |k_2|\leqslant K_2\}
.
@@ -78,9 +85,10 @@ We truncate the Fourier modes and assume that $\hat\varphi_k=0$ if $|k_1|>K_1$ o
\point{\bf FFT}. We compute the last term in~\-(\ref{ins_k})
\begin{equation}
- T(\hat\varphi,k):=
+ T(\hat u,k):=
\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
- \frac{(q\cdot p^\perp)|q|}{|p|}\hat\varphi_q\hat\varphi_p
+ \frac{(q\cdot p^\perp)|q|}{|p|}\hat u_q\hat u_p
+ \label{T}
\end{equation}
using a fast Fourier transform, defined as
\begin{equation}
@@ -99,12 +107,12 @@ in which $\mathcal F^*$ is defined like $\mathcal F$ but with the opposite phase
\indent The condition $p+q=k$ can be rewritten as
\begin{equation}
- T(\hat\varphi,k)
+ T(\hat u,k)
=
\sum_{p,q\in\mathcal K}
\frac1{N_1N_2}
\sum_{n\in\mathcal N}e^{-\frac{2i\pi}{N_1}n_1(p_1+q_1-k_1)-\frac{2i\pi}{N_2}n_2(p_2+q_2-k_2)}
- (q\cdot p^\perp)\frac{|q|}{|p|}\hat\varphi_q\hat\varphi_p
+ (q\cdot p^\perp)\frac{|q|}{|p|}\hat u_q\hat u_p
\end{equation}
provided
\begin{equation}
@@ -113,16 +121,16 @@ provided
Indeed, $\sum_{n_i=0}^{N_i}e^{-\frac{2i\pi}{N_i}n_im_i}$ vanishes unless $m_i=0\%N_i$ (in which $\%N_i$ means `modulo $N_i$'), and, if $p,q,k\in\mathcal K$, then $|p_i+q_i-k_i|\leqslant3K_i$, so, as long as $N_i>3K_i$, then $(p_i+q_i-k_i)=0\%N_i$ implies $p_i+q_i=k_i$.
Therefore,
\begin{equation}
- T(\hat\varphi,k)
+ T(\hat u,k)
=
\textstyle
\frac1{N_1N_2}
\mathcal F^*\left(
- \mathcal F\left(\frac{p_x\hat\varphi_p}{|p|}\right)(n)
- \mathcal F\left(q_y|q|\hat\varphi_q\right)(n)
+ \mathcal F\left(\frac{p_x\hat u_p}{|p|}\right)(n)
+ \mathcal F\left(q_y|q|\hat u_q\right)(n)
-
- \mathcal F\left(\frac{p_y\hat\varphi_p}{|p|}\right)(n)
- \mathcal F\left(q_x|q|\hat\varphi_q\right)(n)
+ \mathcal F\left(\frac{p_y\hat u_p}{|p|}\right)(n)
+ \mathcal F\left(q_x|q|\hat u_q\right)(n)
\right)(k)
\end{equation}
\bigskip
@@ -130,32 +138,32 @@ Therefore,
\point{\bf Energy}.
We define the energy as
\begin{equation}
- E(t)=\frac12\int\frac{dx}{L^2}\ u^2(t,x)=\frac12\sum_{k\in\mathbb Z^2}|\hat u_k|^2
+ E(t)=\frac12\int\frac{dx}{L^2}\ U^2(t,x)=\frac12\sum_{k\in\mathbb Z^2}|\hat U_k|^2
.
\end{equation}
We have
\begin{equation}
- \partial_t E=\int\frac{dx}{L^2}\ u\partial tu
+ \partial_t E=\int\frac{dx}{L^2}\ U\partial tU
=
- \nu\int\frac{dx}{L^2}\ u\Delta u
- +\int\frac{dx}{L^2}\ ug
- -\int\frac{dx}{L^2}\ u(u\cdot\nabla)u
+ \nu\int\frac{dx}{L^2}\ U\Delta U
+ +\int\frac{dx}{L^2}\ UG
+ -\int\frac{dx}{L^2}\ U(U\cdot\nabla)U
.
\end{equation}
Since we have periodic boundary conditions,
\begin{equation}
- \int dx\ u\Delta u=-\int dx\ |\nabla u|^2
+ \int dx\ U\Delta U=-\int dx\ |\nabla U|^2
.
\end{equation}
Furthermore,
\begin{equation}
- I:=\int dx\ u(u\cdot\nabla)u
- =\sum_{i,j=1,2}\int dx\ u_iu_j\partial_ju_i
+ I:=\int dx\ U(U\cdot\nabla)U
+ =\sum_{i,j=1,2}\int dx\ U_iU_j\partial_jU_i
=
- -\sum_{i,j=1,2}\int dx\ (\partial_ju_i)u_ju_i
- -\sum_{i,j=1,2}\int dx\ u_i(\partial_ju_j)u_i
+ -\sum_{i,j=1,2}\int dx\ (\partial_jU_i)U_jU_i
+ -\sum_{i,j=1,2}\int dx\ U_i(\partial_jU_j)U_i
\end{equation}
-and since $\nabla\cdot u=0$,
+and since $\nabla\cdot U=0$,
\begin{equation}
I
=
@@ -165,64 +173,64 @@ and so $I=0$.
Thus,
\begin{equation}
\partial_t E=
- \int\frac{dx}{L^2}\ \left(-\nu|\nabla u|^2+ug\right)
+ \int\frac{dx}{L^2}\ \left(-\nu|\nabla U|^2+UG\right)
=
- \sum_{k\in\mathbb Z^2}\left(-\frac{4\pi^2}{L^2}\nu k^2|\hat u_k|^2+\hat u_{-k}\hat g_k\right)
+ \sum_{k\in\mathbb Z^2}\left(-\frac{4\pi^2}{L^2}\nu k^2|\hat U_k|^2+\hat U_{-k}\hat G_k\right)
.
\end{equation}
Furthermore,
\begin{equation}
- \sum_{k\in\mathbb Z^2}k^2|\hat u_k|^2\geqslant
- \sum_{k\in\mathbb Z^2}|\hat u_k|^2-|\hat u_0|^2
- =2E-|\hat u_0|^2
+ \sum_{k\in\mathbb Z^2}k^2|\hat U_k|^2\geqslant
+ \sum_{k\in\mathbb Z^2}|\hat U_k|^2-|\hat U_0|^2
+ =2E-|\hat U_0|^2
\end{equation}
so
\begin{equation}
- \partial_t E\leqslant -\frac{8\pi^2}{L^2}\nu E+\frac{4\pi^2}{L^2}\nu\hat u_0^2+\sum_{k\in\mathbb Z^2}\hat u_{-k}\hat g_k
+ \partial_t E\leqslant -\frac{8\pi^2}{L^2}\nu E+\frac{4\pi^2}{L^2}\nu\hat U_0^2+\sum_{k\in\mathbb Z^2}\hat U_{-k}\hat G_k
\leqslant
- -\frac{8\pi^2}{L^2}\nu E+\frac{4\pi^2}{L^2}\nu\hat u_0^2+
- \|\hat g\|_2\sqrt{2E}
+ -\frac{8\pi^2}{L^2}\nu E+\frac{4\pi^2}{L^2}\nu\hat U_0^2+
+ \|\hat G\|_2\sqrt{2E}
.
\end{equation}
-In particular, if $\hat u_0=0$ (which corresponds to keeping the center of mass fixed),
+In particular, if $\hat U_0=0$ (which corresponds to keeping the center of mass fixed),
\begin{equation}
- \partial_t E\leqslant -\frac{8\pi^2}{L^2}\nu E+\|\hat g\|_2\sqrt{2E}
+ \partial_t E\leqslant -\frac{8\pi^2}{L^2}\nu E+\|\hat G\|_2\sqrt{2E}
.
\end{equation}
-Now, if $\frac{8\pi^2}{L^2}\nu\sqrt E<\sqrt2\|\hat g\|_2$, then
+Now, if $\frac{8\pi^2}{L^2}\nu\sqrt E<\sqrt2\|\hat G\|_2$, then
\begin{equation}
- \frac{\partial_t E}{-\frac{8\pi^2}{L^2}\nu E+\|\hat g\|_2\sqrt{2E}}\leqslant1
+ \frac{\partial_t E}{-\frac{8\pi^2}{L^2}\nu E+\|\hat G\|_2\sqrt{2E}}\leqslant1
\end{equation}
and so
\begin{equation}
- \frac{\log(1-\frac{8\pi^2\nu}{L^2\sqrt2\|\hat g\|_2}\sqrt{E(t)})}{-\frac{4\pi^2}{L^2}\nu}\leqslant t+
- \frac{\log(1-\frac{8\pi^2\nu}{L^2\sqrt2\|\hat g\|_2}\sqrt{E(0)})}{-\frac{4\pi^2}{L^2}\nu}
+ \frac{\log(1-\frac{8\pi^2\nu}{L^2\sqrt2\|\hat G\|_2}\sqrt{E(t)})}{-\frac{4\pi^2}{L^2}\nu}\leqslant t+
+ \frac{\log(1-\frac{8\pi^2\nu}{L^2\sqrt2\|\hat G\|_2}\sqrt{E(0)})}{-\frac{4\pi^2}{L^2}\nu}
\end{equation}
and
\begin{equation}
E(t)
\leqslant
\left(
- \frac{L^2\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-\frac{4\pi^2}{L^2}\nu t})
+ \frac{L^2\sqrt2\|\hat G\|_2}{8\pi^2\nu}(1-e^{-\frac{4\pi^2}{L^2}\nu t})
+e^{-\frac{4\pi^2}{L^2}\nu t}\sqrt{E(0)}
\right)^2
.
\end{equation}
-If $\frac{8\pi^2}{L^2}\nu\sqrt E>\sqrt2\|\hat g\|_2$,
+If $\frac{8\pi^2}{L^2}\nu\sqrt E>\sqrt2\|\hat G\|_2$,
\begin{equation}
- \frac{\partial_t E}{-\frac{8\pi^2}{L^2}\nu E+\|\hat g\|_2\sqrt{2E}}\geqslant1
+ \frac{\partial_t E}{-\frac{8\pi^2}{L^2}\nu E+\|\hat G\|_2\sqrt{2E}}\geqslant1
\end{equation}
and so
\begin{equation}
- \frac{\log(\frac{8\pi^2\nu}{L^2\sqrt2\|\hat g\|_2}\sqrt{E(t)}-1)}{-\frac{4\pi^2}{L^2}\nu}\geqslant t+
- \frac{\log(\frac{8\pi^2\nu}{L^2\sqrt2\|\hat g\|_2}\sqrt{E(0)})-1}{-\frac{4\pi^2}{L^2}\nu}
+ \frac{\log(\frac{8\pi^2\nu}{L^2\sqrt2\|\hat G\|_2}\sqrt{E(t)}-1)}{-\frac{4\pi^2}{L^2}\nu}\geqslant t+
+ \frac{\log(\frac{8\pi^2\nu}{L^2\sqrt2\|\hat G\|_2}\sqrt{E(0)})-1}{-\frac{4\pi^2}{L^2}\nu}
\end{equation}
and
\begin{equation}
E(t)
\leqslant
\left(
- \frac{L^2\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-\frac{4\pi^2}{L^2}\nu t})
+ \frac{L^2\sqrt2\|\hat G\|_2}{8\pi^2\nu}(1-e^{-\frac{4\pi^2}{L^2}\nu t})
+e^{-\frac{4\pi^2}{L^2}\nu t}\sqrt{E(0)}
\right)^2
.
@@ -232,17 +240,64 @@ and
\point{\bf Enstrophy}.
The enstrophy is defined as
\begin{equation}
- \mathcal En(t)=\int\frac{dx}{L^2}\ |\nabla u|^2
- =\frac{4\pi^2}{L^2}\sum_{k\in\mathbb Z^2}k^2|\hat u_k|^2
+ \mathcal En(t)=\int\frac{dx}{L^2}\ |\nabla U|^2
+ =\frac{4\pi^2}{L^2}\sum_{k\in\mathbb Z^2}k^2|\hat U_k|^2
.
\end{equation}
\bigskip
\point{\bf Numerical instability}.
In order to prevent the algorithm from blowing up, it is necessary to impose the reality of $u(x)$ by hand, otherwise, truncation errors build up, and lead to divergences.
-It is sufficient to ensure that the convolution term $T(\hat\varphi,k)$ satifies $T(\hat\varphi,-k)=T(\hat\varphi,k)^*$.
+It is sufficient to ensure that the convolution term $T(\hat u,k)$ satisfies $T(\hat u,-k)=T(\hat u,k)^*$.
After imposing this condition, the algorithm no longer blows up, but it is still unstable (for instance, increasing $K_1$ or $K_2$ leads to very different results).
+\subsection{Reversible equation}
+\indent The reversible equation is similar to\-~(\ref{ins}) but instead of fixing the viscosity, we fix the enstrophy\-~\cite{Ga22}.
+It is defined directly in Fourier space:
+\begin{equation}
+ \partial_t\hat U_k=
+ -\frac{4\pi^2}{L^2}\alpha(\hat U) k^2\hat U_k+\hat G_k
+ -i\frac{2\pi}L\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
+ (q\cdot\hat U_p)\hat U_q
+ ,\quad
+ k\cdot\hat U_k=0
+\end{equation}
+where $\alpha$ is chosen such that the enstrophy is constant.
+In terms of $\hat u$\-~(\ref{udef}), (\ref{gdef}), (\ref{T}):
+\begin{equation}
+ \partial_t\hat u_k=
+ -\frac{4\pi^2}{L^2}\alpha(\hat u) k^2\hat u_k
+ +\hat g_k
+ +\frac{4\pi^2}{L^2|k|}T(\hat u,k)
+ .
+ \label{rns_k}
+\end{equation}
+To compute $\alpha$, we use the constancy of the enstrophy:
+\begin{equation}
+ \sum_{k\in\mathbb Z^2}k^2\hat U_k\cdot\partial_t\hat U_k
+ =0
+\end{equation}
+which, in terms of $\hat u$ is
+\begin{equation}
+ \sum_{k\in\mathbb Z^2}k^2\hat u_k\partial_t\hat u_k
+ =0
+\end{equation}
+that is
+\begin{equation}
+ \frac{4\pi^2}{L^2}\alpha(\hat u)\sum_{k\in\mathbb Z^2}k^4\hat u_k^2
+ =
+ \sum_{k\in\mathbb Z^2}k^2\hat u_k\hat g_k
+ +\frac{4\pi^2}{L^2}\sum_{k\in\mathbb Z^2}|k|\hat u_kT(\hat u,k)
+\end{equation}
+and so
+\begin{equation}
+ \alpha(\hat u)
+ =\frac{\frac{L^2}{4\pi^2}\sum_k k^2\hat u_k\hat g_k+\sum_k|k|\hat u_kT(\hat u,k)}{\sum_kk^4\hat u_k^2}
+ .
+\end{equation}
+
+
+
\vfill
\eject