1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
/*
Copyright 2015 Ian Jauslin
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "flow_mpfr.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
// define MPFR_USE_VA_LIST to enable the use of mpfr_inits and mpfr_clears
#define MPFR_USE_VA_LIST
// define MPFR_USE_FILE to enable the use of mpfr_printf
#define MPFR_USE_FILE
#include <mpfr.h>
#include "tools.h"
#include "math.h"
#include "definitions.cpp"
#include "number.h"
#include "array.h"
#include "coefficient.h"
#include "flow.h"
#include "rcc_mpfr.h"
// compute flow numerically
int numerical_flow_mpfr(Grouped_Polynomial flow_equation, RCC_mpfr init, Labels labels, int niter, int display_mode){
// running coupling contants
RCC_mpfr rccs=init;
int i,j;
if(display_mode==DISPLAY_NUMERICAL){
// print labels
printf("%5s ","n");
for(j=0;j<rccs.length;j++){
print_label(rccs.indices[j], labels);
}
printf("\n\n");
// print initial values
printf("%5d ",0);
for(j=0;j<rccs.length;j++){
mpfr_printf("% 14.7Re ",rccs.values[j]);
}
printf("\n");
}
for(i=0;i<niter;i++){
// compute a single step
step_flow_mpfr(&rccs, flow_equation);
// convert ls to alphas
if(display_mode==DISPLAY_NUMERICAL){
// print the result
printf("%5d ",i+1);
for(j=0;j<rccs.length;j++){
mpfr_printf("% 14.7Re ",rccs.values[j]);
}
printf("\n");
}
}
if(display_mode==DISPLAY_NUMERICAL){
// print labels
printf("\n");
printf("%5s ","n");
for(j=0;j<rccs.length;j++){
print_label(rccs.indices[j], labels);
}
printf("\n\n");
}
if(display_mode==DISPLAY_FINAL){
RCC_mpfr_print(rccs);
}
return(0);
}
// single step in the flow
int step_flow_mpfr(RCC_mpfr* rccs, Grouped_Polynomial flow_equation){
int i;
mpfr_t* res;
// security: this function assumes that the length of the rcc and the flow_equation are the same
if((*rccs).length!=flow_equation.length){
fprintf(stderr,"error: mismatch in the size of the flow equation and the rccs");
exit(-1);
}
res=calloc((*rccs).length,sizeof(mpfr_t));
// compute the constants first
for(i=0;i<flow_equation.length;i++){
if(flow_equation.indices[i]<0){
evalcoef_mpfr(*rccs, flow_equation.coefs[i], res[i]);
mpfr_set((*rccs).values[i], res[i], MPFR_RNDN);
}
}
// for each equation
for(i=0;i<flow_equation.length;i++){
if(flow_equation.indices[i]>=0){
evalcoef_mpfr(*rccs, flow_equation.coefs[i], res[i]);
}
}
// set new rccs
for(i=0;i<flow_equation.length;i++){
mpfr_set((*rccs).values[i], res[i], MPFR_RNDN);
mpfr_clear(res[i]);
}
// free memory
free(res);
return(0);
}
|