Ian Jauslin
summaryrefslogtreecommitdiff
blob: 1701b159b0c686ecb43ca45fe95242095c564b11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*
Copyright 2015-2022 Ian Jauslin

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

#include "flow_mpfr.h"

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
// define MPFR_USE_VA_LIST to enable the use of mpfr_inits and mpfr_clears
#define MPFR_USE_VA_LIST
// define MPFR_USE_FILE to enable the use of mpfr_printf
#define MPFR_USE_FILE
#include <mpfr.h>
#include "tools.h"
#include "math.h"
#include "definitions.cpp"
#include "number.h"
#include "array.h"
#include "coefficient.h"
#include "flow.h"
#include "rcc_mpfr.h"
#include "grouped_polynomial.h"



// compute flow numerically
int numerical_flow_mpfr(Grouped_Polynomial flow_equation, RCC_mpfr init, Grouped_Polynomial postprocess_flow_equation, Labels labels, int niter, int display_mode){
  // running coupling contants
  RCC_mpfr rccs=init;
  int i,j;
  // for printing
  RCC_mpfr rcc_print;


  // init printing rcc
  init_RCC_mpfr(&rcc_print, rccs.length);

  if(display_mode==DISPLAY_NUMERICAL){
    // print labels
    printf("%5s  ","n");
    for(j=0;j<rccs.length;j++){
      print_label(rccs.indices[j], labels);
    }
    printf("\n\n");

    // print initial values
    RCC_mpfr_cpy_noinit(rccs,&rcc_print);
    if(postprocess_flow_equation.length>0){
      // ignore constants
      for(j=0;j<rcc_print.length;j++){
	if(rcc_print.indices[j]<0){
	  mpfr_set_ui(rcc_print.values[j], 1, MPFR_RNDN);
	}
      }
      evaleq_mpfr(rcc_print, rccs, postprocess_flow_equation);
    }
    printf("%5d  ",0);
    for(j=0;j<rcc_print.length;j++){
      // use constants from rcc
      if(rcc_print.indices[j]<0){
	mpfr_printf("% 14.7Re  ",rccs.values[j]);
      }
      else{
	mpfr_printf("% 14.7Re  ",rcc_print.values[j]);
      }
    }
    printf("\n");
  }

  for(i=0;i<niter;i++){
    // compute a single step
    step_flow_mpfr(&rccs, flow_equation);

    // print
    RCC_mpfr_cpy_noinit(rccs,&rcc_print);
    if(postprocess_flow_equation.length>0){
      // ignore constants
      for(j=0;j<rcc_print.length;j++){
	if(rcc_print.indices[j]<0){
	  mpfr_set_ui(rcc_print.values[j], 1, MPFR_RNDN);
	}
      }
      evaleq_mpfr(rcc_print, rccs, postprocess_flow_equation);
    }
    if(display_mode==DISPLAY_NUMERICAL){
      // print the result
      printf("%5d  ",i+1);
      for(j=0;j<rcc_print.length;j++){
	// use constants from rcc
	if(rcc_print.indices[j]<0){
	  mpfr_printf("% 14.7Re  ",rccs.values[j]);
	}
	else{
	  mpfr_printf("% 14.7Re  ",rcc_print.values[j]);
	}
      }
      printf("\n");
    }
  }

  if(display_mode==DISPLAY_NUMERICAL){
    // print labels
    printf("\n");
    printf("%5s  ","n");
    for(j=0;j<rccs.length;j++){
      print_label(rccs.indices[j], labels);
    }
    printf("\n\n");
  }

  if(display_mode==DISPLAY_FINAL){
    if(postprocess_flow_equation.length>0){
      evaleq_mpfr(rcc_print, rccs, postprocess_flow_equation);
    }
    else{
      rcc_print=rccs;
    }
    RCC_mpfr_print(rcc_print);
  }

  free_RCC_mpfr(rcc_print);
  return(0);
}

// single step in the flow
int step_flow_mpfr(RCC_mpfr* rccs, Grouped_Polynomial flow_equation){
  int i;
  mpfr_t* res;

  // security: this function assumes that the length of the rcc and the flow_equation are the same
  if((*rccs).length!=flow_equation.length){
    fprintf(stderr,"error: mismatch in the size of the flow equation and the rccs");
    exit(-1);
  }
  
  res=calloc((*rccs).length,sizeof(mpfr_t));

  // compute the constants first
  for(i=0;i<flow_equation.length;i++){
    if(flow_equation.indices[i]<0){
      evalcoef_mpfr(*rccs, flow_equation.coefs[i], res[i]);
      mpfr_set((*rccs).values[i], res[i], MPFR_RNDN);
    }
  }

  // for each equation
  for(i=0;i<flow_equation.length;i++){
    if(flow_equation.indices[i]>=0){
      evalcoef_mpfr(*rccs, flow_equation.coefs[i], res[i]);
    }
  }

  // set new rccs
  for(i=0;i<flow_equation.length;i++){
    mpfr_set((*rccs).values[i], res[i], MPFR_RNDN);
    mpfr_clear(res[i]);
  }

  // free memory
  free(res);
  return(0);
}