Ian Jauslin
summaryrefslogtreecommitdiff
blob: 10c5ae080b72e30cb850d5edbedd4cca747fd1ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/*
Copyright 2015-2022 Ian Jauslin

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

#include "flow.h"

#include <stdio.h>
#include <stdlib.h>
#include "tools.h"
#include "math.h"
#include "definitions.cpp"
#include "number.h"
#include "array.h"
#include "coefficient.h"
#include "rcc.h"
#include "grouped_polynomial.h"


// compute flow numerically, no exponentials
int numerical_flow(Grouped_Polynomial flow_equation, RCC init, Grouped_Polynomial postprocess_flow_equation, Labels labels, int niter, int display_mode){
  // running coupling contants
  RCC rccs=init;
  // for printing
  RCC rcc_print;
  int i,j;

  // init printing rcc
  init_RCC(&rcc_print, rccs.length);

  if(display_mode==DISPLAY_NUMERICAL){
    // print labels
    printf("%5s  ","n");
    for(j=0;j<rccs.length;j++){
      print_label(rccs.indices[j], labels);
    }
    printf("\n\n");

    // print initial values
    RCC_cpy_noinit(rccs,&rcc_print);
    if(postprocess_flow_equation.length>0){
      // ignore constants
      for(j=0;j<rcc_print.length;j++){
	if(rcc_print.indices[j]<0){
	  rcc_print.values[j]=1.;
	}
      }
      evaleq(rcc_print, rcc_print, postprocess_flow_equation);
    }
    printf("%5d  ",0);
    for(j=0;j<rcc_print.length;j++){
      // use constants from rcc
      if(rcc_print.indices[j]<0){
	printf("% 14.7Le  ",rccs.values[j]);
      }
      else{
	printf("% 14.7Le  ",rcc_print.values[j]);
      }
    }
    printf("\n");
  }

  for(i=0;i<niter;i++){
    // compute a single step
    step_flow(&rccs, flow_equation);

    // print
    if(postprocess_flow_equation.length>0){
      RCC_cpy_noinit(rccs,&rcc_print);
      // ignore constants
      for(j=0;j<rcc_print.length;j++){
	if(rcc_print.indices[j]<0){
	  rcc_print.values[j]=1.;
	}
      }
      evaleq(rcc_print, rcc_print, postprocess_flow_equation);
    }
    else{
      RCC_cpy_noinit(rccs,&rcc_print);
    }
    if(display_mode==DISPLAY_NUMERICAL){
      // print the result
      printf("%5d  ",i+1);
      for(j=0;j<rcc_print.length;j++){
	// use constants from rcc
	if(rcc_print.indices[j]<0){
	  printf("% 14.7Le  ",rccs.values[j]);
	}
	else{
	  printf("% 14.7Le  ",rcc_print.values[j]);
	}
      }
      printf("\n");
    }
  }

  if(display_mode==DISPLAY_NUMERICAL){
    // print labels
    printf("\n");
    printf("%5s  ","n");
    for(j=0;j<rccs.length;j++){
      print_label(rccs.indices[j], labels);
    }
    printf("\n\n");
  }

  if(display_mode==DISPLAY_FINAL){
    if(postprocess_flow_equation.length>0){
      RCC_cpy_noinit(rccs,&rcc_print);
      // ignore constants
      for(j=0;j<rcc_print.length;j++){
	if(rcc_print.indices[j]<0){
	  rcc_print.values[j]=1.;
	}
      }
      evaleq(rcc_print, rcc_print, postprocess_flow_equation);
    }
    else{
      RCC_cpy_noinit(rccs,&rcc_print);
    }
    RCC_print(rcc_print);
  }

  free_RCC(rcc_print);

  return(0);
}

// single step in the flow no exponentials
int step_flow(RCC* rccs, Grouped_Polynomial flow_equation){
  int i;
  long double* new_rccs=calloc((*rccs).length,sizeof(long double));

  // initialize vectors to 0
  for(i=0;i<(*rccs).length;i++){
    new_rccs[i]=0.;
  }

  // compute the constants first
  for(i=0;i<flow_equation.length;i++){
    if(flow_equation.indices[i]<0){
      evalcoef(*rccs, flow_equation.coefs[i], new_rccs+i);
      (*rccs).values[i]=new_rccs[i];
    }
  }

  // for each equation
  for(i=0;i<flow_equation.length;i++){
    if(flow_equation.indices[i]>=0){
      evalcoef(*rccs, flow_equation.coefs[i], new_rccs+i);
    }
  }

  // copy results to rccs
  for(i=0;i<(*rccs).length;i++){
    (*rccs).values[i]=new_rccs[i];
  }

  // free memory
  free(new_rccs);
  return(0);
}


// print the label of an rcc (takes constants and derivatives into account)
int print_label(int index, Labels labels){
  int i;
  int nderivs;
  int posin_labels;
  Char_Array label;

  // constant term
  if(index<0){
    nderivs=-index/DOFFSET;
    for (i=0;i<12-nderivs;i++){
      printf(" ");
    }
    for(i=0;i<nderivs;i++){
      printf("d");
    }
    printf("C%d  ",-index-nderivs*DOFFSET);
  }
  else{
    nderivs=index/DOFFSET;
    posin_labels=intlist_find_err(labels.indices, labels.length, index-nderivs*DOFFSET);
    label=labels.labels[posin_labels];
    for (i=0;i<14-label.length-nderivs;i++){
      printf(" ");
    }
    for(i=0;i<nderivs;i++){
      printf("d");
    }
    printf("%s  ",char_array_to_str_noinit(labels.labels+posin_labels));
  }

  return(0);
}