1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
/*
Copyright 2015 Ian Jauslin
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "flow.h"
#include <stdio.h>
#include <stdlib.h>
#include "tools.h"
#include "math.h"
#include "definitions.cpp"
#include "number.h"
#include "array.h"
#include "coefficient.h"
#include "rcc.h"
// compute flow numerically, no exponentials
int numerical_flow(Grouped_Polynomial flow_equation, RCC init, Labels labels, int niter, int display_mode){
// running coupling contants
RCC rccs=init;
int i,j;
if(display_mode==DISPLAY_NUMERICAL){
// print labels
printf("%5s ","n");
for(j=0;j<rccs.length;j++){
print_label(rccs.indices[j], labels);
}
printf("\n\n");
// print initial values
printf("%5d ",0);
for(j=0;j<rccs.length;j++){
printf("% 14.7Le ",rccs.values[j]);
}
printf("\n");
}
for(i=0;i<niter;i++){
// compute a single step
step_flow(&rccs, flow_equation);
// convert ls to alphas
if(display_mode==DISPLAY_NUMERICAL){
// print the result
printf("%5d ",i+1);
for(j=0;j<rccs.length;j++){
printf("% 14.7Le ",rccs.values[j]);
}
printf("\n");
}
}
if(display_mode==DISPLAY_NUMERICAL){
// print labels
printf("\n");
printf("%5s ","n");
for(j=0;j<rccs.length;j++){
print_label(rccs.indices[j], labels);
}
printf("\n\n");
}
if(display_mode==DISPLAY_FINAL){
RCC_print(rccs);
}
return(0);
}
// single step in the flow no exponentials
int step_flow(RCC* rccs, Grouped_Polynomial flow_equation){
int i;
long double* new_rccs=calloc((*rccs).length,sizeof(long double));
// initialize vectors to 0
for(i=0;i<(*rccs).length;i++){
new_rccs[i]=0.;
}
// compute the constants first
for(i=0;i<flow_equation.length;i++){
if(flow_equation.indices[i]<0){
evalcoef(*rccs, flow_equation.coefs[i], new_rccs+i);
(*rccs).values[i]=new_rccs[i];
}
}
// for each equation
for(i=0;i<flow_equation.length;i++){
if(flow_equation.indices[i]>=0){
evalcoef(*rccs, flow_equation.coefs[i], new_rccs+i);
}
}
// copy results to rccs
for(i=0;i<(*rccs).length;i++){
(*rccs).values[i]=new_rccs[i];
}
// free memory
free(new_rccs);
return(0);
}
// print the label of an rcc (takes constants and derivatives into account)
int print_label(int index, Labels labels){
int i;
int nderivs;
int posin_labels;
Char_Array label;
// constant term
if(index<0){
nderivs=-index/DOFFSET;
for (i=0;i<12-nderivs;i++){
printf(" ");
}
for(i=0;i<nderivs;i++){
printf("d");
}
printf("C%d ",-index-nderivs*DOFFSET);
}
else{
nderivs=index/DOFFSET;
posin_labels=intlist_find_err(labels.indices, labels.length, index-nderivs*DOFFSET);
label=labels.labels[posin_labels];
for (i=0;i<14-label.length-nderivs;i++){
printf(" ");
}
for(i=0;i<nderivs;i++){
printf("d");
}
printf("%s ",char_array_to_str_noinit(labels.labels+posin_labels));
}
return(0);
}
|