Ian Jauslin


Circular Landau oscillator

$$U(\theta)=\frac{\alpha\omega_1^2}\lambda\cos\theta-\beta\omega_1^2\sqrt{1+\alpha^2+2\alpha\cos\theta}$$ The graphs below show the phase space, potential, and a physical representation of the pendulum in motion. The energy and the parameter $\beta$ can be adjusted with the sliders below and exhibit the different types of motion:

Energy: $E=$-0.5
Beta: $\beta=$-0.5

Stop!


webmaster