Ian Jauslin
summaryrefslogtreecommitdiff
blob: 0cab2609f2e4adaf2ba433feaccfd8f06e02387d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
\documentclass{ian-presentation}

\usepackage[hidelinks]{hyperref}
\usepackage{graphicx}
\usepackage{xcolor}

\definecolor{highlight}{HTML}{981414}
\def\high#1{{\color{highlight}#1}}

\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf\Large
\hfil Statistical Mechanics:\par
\smallskip
\hfil from the microscopic to the macroscopic\par
\vfil
\large
\hfil Ian Jauslin\par
\rm\normalsize
\vfil
{\tt \href{mailto:ian.jauslin@rutgers.edu}{ian.jauslin@rutgers.edu}}
\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}}
\eject

\setcounter{page}1
\pagestyle{plain}

\title{Macroscopic laws: phases of water}
\begin{itemize}
  \item Phenomena that are \high{directly observable} are \high{Macroscopic}.

  \item For example, water at ambient pressure freezes \high{at} $0^\circ\mathrm{C}$ and boils \high{at} $100^\circ\mathrm{C}$.

  \item Liquid water, vapor and ice all have \high{very different properties}, and yet one can \high{easily transition} between these states, simply by changing the \high{temperature}
  \begin{itemize}
    \item A gas fills the entire volume available.
    \item A liquid is incompressible, but flows.
    \item A solid is rigid, and moves only as a whole.
  \end{itemize}

  \item Melting ice is \high{exactly} at $0^\circ\mathrm{C}$, and boiling water is \high{exactly} at $100^\circ\mathrm{C}$.
\end{itemize}
\vfill
\eject

\title{Macroscopic laws: gasses}
\begin{itemize}
  \item The state of a (ideal) gas is entirely characterized by \high{three} quantities:
  \begin{itemize}
    \item $p$: pressure
    \item $T$: temperature
    \item $n$: density
  \end{itemize}

  \item Ideal gas law:
    $$p=\frac{k_B}\mu nT$$
  \vskip-5pt

  \item Energy density:
    $$e=\frac32k_B T$$
\end{itemize}
\vfill
\eject

\title{Microscopic Theories: phases of water}
\begin{itemize}
  \item Understand macroscopic laws from \high{first principles}: \high{Microscopic} theories.
  \vskip-5pt
  \item Freezing and boiling: \high{ordering transitions}.

  \hfil
  \includegraphics[width=3cm]{gas.png}
  \hfil
  \includegraphics[width=3cm]{liquid.png}
  \hfil
  \includegraphics[width=3cm]{crystal.png}

  \begin{itemize}
    \item Gases expand because the molecules are far apart.
    \vskip-5pt
    \item Liquids are jammed, but molecules can still move around each other.
    \vskip-5pt
    \item Solids are constrained by the rigid pattern of their molecules.
  \end{itemize}
\end{itemize}
\vfill
\eject

\title{Microscopic Theories: gasses}
\begin{itemize}
  \item Ideal gas: non-interacting molecules.

  \hfil
  \includegraphics[width=3cm]{gas.png}

  \item We will discuss later how this predicts the laws discussed earlier.
\end{itemize}
\vfill
\eject
\title{What is Statistical Mechanics?}
\vfill
\begin{itemize}
  \item Statistical mechanics: understanding how the \high{macroscopic} properties follow from the \high{microscopic} laws of nature (``first principles'').
\end{itemize}
\vfill
\eject

\title{The arrow of time}
\begin{itemize}
  \item Microscopic dynamics are \high{reversible}.

  \item Consider the motion of a point particle, which follows the laws of (conservative) Newtonian mechanics. If time is \high{reversed}, the motion still satisfies the \high{same} laws of Newtonian mechanics.

  \item In fact, Newtonian mechanics has a \high{recurrence time}: any (bounded, conservative) mechanical system will return \high{arbitrarily close} to its original state in \high{finite} time.
\end{itemize}
\vfill
\eject

\title{The arrow of time}
\begin{itemize}
  \item Yet, many macroscopic phenomena are \high{irreversible}.
  \item Friction: the law of friction is not invariant under time reversal.
  \item The expansion of a gas in a container.
  \item How can \high{reversible} microscopic dynamics give rise to \high{irreversible} macroscopic phenomena?
\end{itemize}
\vfill
\eject

\title{The thermodynamic limit}
\begin{itemize}
  \item One mole $\approx\ 6.02\times10^{23}$.

  \item Rough estimate of the recurrence time for a mechanical system containing $10^{23}$ particles: $\approx 10^{10^{23}}\ \mathrm{s}$. (Time since the big bang: $\approx 10^{17}\ \mathrm s$.)

  \item Whereas a \high{finite} number of microscopic particles behaves reversibly, an \high{infinite} number of microscopic particles does not.

  \item Fundamental tool of statistical mechanics: the \high{thermodynamic limit}, in which the number of particles $\to\infty$.

\end{itemize}
\vfill
\eject

\title{Putting the Statistics in Statistical Mechanics}
\begin{itemize}
  \item To understand these infinite interacting particles, we use \high{probability theory}.

  \item Simple example: the ideal gas:
  \begin{itemize}
    \item Each particle is a point, and no two particles interact.
    \item Probability distribution: \high{Gibbs distribution}
    $$
      p(\mathbf x,\mathbf v)=\frac1Z e^{-\beta H(\mathbf x,\mathbf v)}
      ,\quad
      \beta:=\frac1{k_BT}
    $$
    where $H(\mathbf x,\mathbf v)$ is the energy of the configuration where the particles are located at $\mathbf x\equiv(x_1,\cdots,x_N)$ with velocities $\mathbf v\equiv(v_1,\cdots,v_N)$.
  \end{itemize}
\end{itemize}
\vfill
\eject

\title{The ideal gas}
\begin{itemize}
  \item The energy is the kinetic energy:
  $$
    H(\mathbf x,\mathbf v)=
    \frac12m\sum_{i=1}^Nv_i^2
    .
  $$
  \vskip-5pt

  \item Denoting the number of particles by $N$ and the volume by $V$, we have
  $$
    Z=\int d\mathbf x d\mathbf v\ e^{-\beta H(\mathbf x,\mathbf v)}
    =\int d\mathbf x\int d\mathbf v\ e^{-\frac{\beta m}2\mathbf v^2}=V^N\left(\frac{2\pi}{\beta m}\right)^{\frac32N}
    .
  $$
  \vskip-5pt

  \item The average energy is
  $$
    \mathbb E(H)=\frac1Z\int d\mathbf xd\mathbf v\ H(\mathbf x,\mathbf v)e^{-\beta H(\mathbf x,\mathbf v)}
    =
    -\frac\partial{\partial\beta}\log Z
    =
    \frac{3N}{2\beta}
    =\frac32Nk_BT
    .
  $$

  \item
  The ideal gas law can also be proved for this model.
\end{itemize}
\vfill
\eject

\title{Hard sphere model}
\begin{itemize}
  \item The ideal gas does \high{not} form a liquid or a solid phase.

  \item In order to have such phase transitions, we need an \high{interaction} between particles.

  \item \high{Hard sphere model}: each particle is a sphere of radius $R$, and the interaction is such that no two spheres can overlap.

  \item Parameter: density.
\end{itemize}
\vfill
\eject

\title{Hard sphere model}
\vskip-10pt
\begin{itemize}
  \item We expect, from numerical simulations, to see two phases: a \high{gaseous} phase at low density and a \high{crystalline} one at high density.
\end{itemize}

\hfil
\includegraphics[width=3cm]{gas.png}
\hfil
\includegraphics[width=3cm]{crystal.png}
\vskip-10pt

\begin{itemize}
  \item In the \high{gaseous phase}, the particles are almost decorrelated: they behave as if they did not interact.

  \item In the \high{crystalline phase}, they form large scale periodic structures: they behave very differently from the ideal gas.
\end{itemize}

\vfill
\eject

\title{Hard sphere model}
\begin{itemize}
  \item The \high{gaseous phase} is very well understood.

  \item The \high{crystalline phase} is much more of a mystery: we still lack a proof that it exists at positive temperatures!

  \item \high{Open Problem}: prove that hard spheres crystallize at sufficiently low temperatures.

  \item Even at zero temperature, it was only proved that they crystallize in 2005, and that proof is computer-assisted.

  \item This is very difficult: even tiny fluctuations in the positions of the spheres could destroy the crystalline structure.
\end{itemize}
\vfill
\eject

\title{Liquid crystals}
\begin{itemize}
  \item Phase of matter that shares properties of \high{liquids} (disorder) and \high{crystals} (order).

  \item Nematic liquid crystals: order in orientation, disorder in position.
\end{itemize}
\hfil\includegraphics[width=4cm]{nematic.png}
\vfill
\eject

\title{Liquid crystals}
\begin{itemize}
  \item Model: hard cylinders, expected phases: \high{gas}, \high{nematic}, \high{smectic}, ...
\end{itemize}
\hfil\includegraphics[height=4cm]{gas-rods.png}
\hfil\includegraphics[height=4cm]{nematic.png}
\hfil\includegraphics[height=4cm]{smectic.png}
\begin{itemize}
  \item Here again, the gas phase is well understood, but neither the nematic nor the smectic have yet been proved to exist.
\end{itemize}
\vfill
\eject

\title{Continuous symmetry breaking}
\begin{itemize}
  \item Difficulty for both the hard spheres and liquid crystals: \high{breaking a continuous symmetry} (translation for the hard spheres, rotation for the liquid crystals).

  \item Continuous symmetries cannot\textsuperscript{$\ast$} be broken in one or two dimensions.

  \item Continuous symmetry breaking can, so far, only be proved in very special models.
\end{itemize}
\vfill
\eject

\title{Lattice models}
\begin{itemize}
  \item Many examples:
\end{itemize}
\vfill
\hfil\includegraphics[width=1.2cm]{diamond.pdf}
\hfil\includegraphics[width=1.2cm]{cross.pdf}
\hfil\includegraphics[width=1.2cm]{hexagon.pdf}
\par
\vfill
\hfil\includegraphics[width=0.9cm]{V_triomino.pdf}
\hfil\includegraphics[width=0.9cm]{T_tetromino.pdf}
\hfil\includegraphics[width=0.9cm]{L_tetromino.pdf}
\hfil\includegraphics[width=0.9cm]{P_pentomino.pdf}
\vfill
\eject

\title{Hard diamond model}
\hfil\includegraphics[height=6cm]{diamonds.pdf}
\vfill
\eject

\addtocounter{page}{-1}
\title{Hard diamond model}
\hfil\includegraphics[height=6cm]{diamonds_color.pdf}
\vfill
\eject

\title{Hard diamond model}
\vfill
\begin{itemize}
  \item Idea: treat the vacancies as a gas of ``virtual particles''.

  \item Can prove crystallization for a large class of lattice models.
\end{itemize}
\vfill
\eject

\title{Hard rods on a lattice}
\begin{itemize}
  \item Model: rods of length $k$ on $\mathbb Z^2$.
\end{itemize}
\hfil\includegraphics[height=5cm]{rods.pdf}
\vfill
\eject

\title{Hard rods on a lattice}
\begin{itemize}
  \item Can prove that, when $k^{-2}\ll\rho\ll k^{-1}$, the system forms a nematic phase.

  \item For larger densities, one expects yet another phase, in which there are tiles of horizontal and vertical rods.

  \item \high{Open Problem}: generalization to 3 dimensions.
\end{itemize}
\vfill
\eject

\title{Conclusion}
\begin{itemize}
  \item Statistical Mechanics establishes a \high{link} between \high{Microscopic} theories and \high{Macroscopic} behavior.

  \item (In equilibrium) it consists in studying the properties of special probability distributions called \high{Gibbs Measures}.

  \item Even simple models pose significant mathematical challenges.

  \item Still, much can be said about \high{lattice models}, even though there are many problems that are \high{still open}!
\end{itemize}

\end{document}