1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
\documentclass{kiss}
\usepackage{presentation}
\usepackage{header}
\begin{document}
\pagestyle{empty}
\hbox{}\vfil
\bf
\large
\hfil Non-perturbative renormalization group\par
\smallskip
\hfil in a hierarchical Kondo model\par
\vfil
\hfil Ian Jauslin
\rm
\normalsize
\vfil
\small
\hfil joint with {\normalsize\bf G.~Benfatto} and {\normalsize\bf G.~Gallavotti}\par
\vskip10pt
arXiv: {\tt1506.04381}\hfill{\tt http://ian.jauslin.org/}
\eject
\pagestyle{plain}
\setcounter{page}{1}
\title{Kondo model}
\begin{itemize}
\item s-d model: [P.~Anderson, 1960] [J.~Kondo, 1964]:
\itemptchange{$\scriptstyle\blacktriangleright$ }
\begin{itemize}
\item 1D chain of non-interacting spin-1/2 fermions: {\it electrons}.
\item lone spin-1/2 fermion: {\it impurity}.
\item the impurity interacts with the electron at 0.
\end{itemize}
\itemptreset
\end{itemize}
\vskip0ptplus3fil
\hfil\includegraphics[width=0.8\textwidth]{Figs/kondo_model.pdf}\par
\vskip0ptplus3fil
\eject
\title{Kondo Hamiltonian}
\vskip5pt
\hfil\includegraphics[width=0.8\textwidth]{Figs/kondo_model.pdf}\par
$$
H=H_0+V
$$
\begin{itemize}
\item $H_0$: kinetic term of the {\it electrons}
$$
H_0:=\sum_{x}\sum_{\alpha=\uparrow,\downarrow}c^\dagger_\alpha(x)\,\left(-\frac{\Delta}2-1\right)\,c_\alpha(x)
$$
\itemptchange{$\scriptstyle\blacktriangleright$ }
\begin{itemize}
\item $c_\alpha(x)$: fermionic annihilation operator
\item $\alpha$: spin
\item $x$: site
\end{itemize}
\itemptreset
\end{itemize}
\eject
\title{Kondo Hamiltonian}
\vskip5pt
\hfil\includegraphics[width=0.8\textwidth]{Figs/kondo_model.pdf}\par
$$
H=H_0+V
$$
\begin{itemize}
\item $V$: interaction with the {\it impurity}
$$
V=-\lambda_0\sum_{j=1,2,3}\sum_{\alpha_1,\alpha_2,\alpha_3,\alpha_4}c^\dagger_{\alpha_1}(0)\sigma^j_{\alpha_1,\alpha_2}c_{\alpha_2}(0)\, d^\dagger_{\alpha_3}\sigma^j_{\alpha_3,\alpha_4}d_{\alpha_4}
$$
\itemptchange{$\scriptstyle\blacktriangleright$ }
\begin{itemize}
\item $d_\alpha$: fermionic annihilation operator
\item $\sigma^j$: Pauli matrix
\item $\lambda_0>0$: {\it ferromagnetic} case
\item $\lambda_0<0$: {\it anti-ferromagnetic} case \end{itemize}
\itemptreset
\end{itemize}
\eject
\title{Kondo effect: magnetic susceptibility}
\begin{itemize}
\item Magnetic susceptibility: response to a magnetic field $h$:
$$
\chi(h,\beta):=\partial_hm(h,\beta).
$$
($m(h,\beta)$: magnetization).
\item Isolated impurity:
$$
\chi^{(0)}(0,\beta)=\frac\beta2\mathop{\longrightarrow}_{\beta\to\infty}\infty
$$
\item Chain of electrons: Pauli paramagnetism:
$$
\lim_{\beta\to\infty}\lim_{L\to\infty}\frac1L\chi_e(0,\beta)<\infty.
$$
\end{itemize}
\eject
\title{Kondo effect: magnetic susceptibility}
\begin{itemize}
\item Turn on the interaction: $\lambda_0\neq0$. Impurity susceptibility $\chi^{(\lambda_0)}(h,\beta)$.
\item Ferromagnetic interaction ($\lambda_0>0$):
$$
\lim_{\beta\to\infty}\chi^{(\lambda_0)}(0,\beta)=\infty.
$$
\item Anti-ferromagnetic interaction ($\lambda_0>0$):
$$
\lim_{\beta\to\infty}\chi^{(\lambda_0)}(0,\beta)<\infty.
$$
\item {\it Non-perturbative} effect: the qualitative behavior changes as soon as $\lambda_0\neq0$.
\end{itemize}
\eject
\title{Previous results}
\begin{itemize}
\item [J.~Kondo, 1964]: third order Born approximation.
\vskip0pt plus3fil
\item [P.~Anderson, 1970], [K.~Wilson, 1975]: renormalization group approach
\itemptchange{$\scriptstyle\blacktriangleright$ }
\begin{itemize}
\item Sequence of effective Hamiltonians at varying energy scales.
\item For anti-ferromagnetic interactions, the effective Hamiltonians go to a {\it non-trivial fixed point}.
\item Anderson: instability of the trivial fixed point ($H_0$).
\item Wilson: numerical diagonalization at each step, and perturbative expansions around the trivial and non-trivial fixed points.
\end{itemize}
\end{itemize}
\eject
\title{Current results}
\begin{itemize}
\item Hierarchical Kondo model: idealization of the Kondo model that has the same scaling properties.
\item It is {\it exactly solvable}: the map relating the effective theories at different scales is {\it explicit} (no perturbative expansions).
\item With $\lambda_0<0$, the flow tends to a non-trivial fixed point, and $\chi^{(\lambda_0)}<\infty$ in the $\beta\to\infty$ limit (Kondo effect).
\item{\tt Remark}: [Andrei, 1980]: the Kondo model (suitably linearized) is exactly solvable via Bethe Ansatz.
\end{itemize}
\eject
\title{Field theory for the Kondo model}
\begin{itemize}
\item Partition function $Z:=\mathrm{Tr}(e^{-\beta H})$.
\vskip5pt
\item By introducing an extra dimension ({\it imaginary time}), $Z$ can be expressed as the {\it Gaussian} average over a {\it Grassmann} algebra:
$$
Z=\left<e^{-\int_0^\beta dt\ \mathcal V(t)}\right>
$$
where
$$
\mathcal V(t)=-\lambda_0\kern-10pt\sum_{\displaystyle\mathop{\scriptstyle j=1,2,3}_{\alpha_1,\alpha_2,\alpha_3,\alpha_4}}\kern-10pt
\psi^+_{\alpha_1}(0,t)\sigma^j_{\alpha_1,\alpha_2}\psi^-_{\alpha_2}(0,t)\, \varphi^+_{\alpha_3}(t)\sigma^j_{\alpha_3,\alpha_4}\varphi^-_{\alpha_4}(t)
$$
with $\{\psi^\pm_\alpha(0,t),\psi^\pm_{\alpha'}(0,t')\}=0$, $\{\varphi^\pm_\alpha(t),\varphi^\pm_{\alpha'}(t')\}=0$.
\end{itemize}
\eject
\title{Hierarchical fields}
\hfil\includegraphics[width=0.8\textwidth]{Figs/hierarchical_boxes.pdf}\par
\begin{itemize}
\item For each $m<0$, we introduce fields {\it on scale $m$} indexed by an interval:
$$
\psi_\alpha^\pm(\Delta_{i,\pm}^{[m]}),\quad
\varphi_\alpha^\pm(\Delta_{i,\pm}^{[m]})
$$
where
$$\begin{array}l
\Delta_{i,-}^{[m]}:=[2^{-m}i,2^{-m}(i+\frac12))\\[0.3cm]
\Delta_{i,+}^{[m]}:=[2^{-m}(i+\frac12),2^{-m}(i+1))
\end{array}$$
\item There are 8 fields in each $\Delta_{i,\pm}^{[m]}$.
\end{itemize}
\eject
\title{Hierarchical fields}
\begin{itemize}
\item Split fields over scales:
$$
\psi_\alpha^\pm(t):=\sum_{m}\psi_\alpha^{[m]\pm}(\Delta^{[m]}(t)),\quad
\varphi_\alpha^\pm(t):=\sum_{m}\varphi_\alpha^{[m]\pm}(\Delta^{[m]}(t))
$$
\end{itemize}
\hfil\includegraphics[width=0.8\textwidth]{Figs/hierarchical_boxtree.pdf}\par
\vfil
\eject
\title{Hierarchical propagators}
\begin{itemize}
\item Moments:
$$\begin{array}{r@{\ }l}
\left<\psi_\alpha^{[m]-}(\Delta_{i,-\eta}^{[m]})\psi_\alpha^{[m]+}(\Delta_{i,\eta}^{[m]})\right>=&\eta 2^m\\[0.3cm]
\left<\varphi_\alpha^{[m]-}(\Delta_{i,-\eta}^{[m]})\varphi_\alpha^{[m]+}(\Delta_{i,\eta}^{[m]})\right>=&\eta
\end{array}$$
\item Full propagator:
$$
\left<\psi_\alpha^{-}(t)\psi_\alpha^{+}(t')\right>=\mathrm{sign}(t-t') 2^{m_{t,t'}},\quad
\left<\varphi_\alpha^{-}(t)\varphi_\alpha^{+}(t')\right>=\mathrm{sign}(t-t')
$$
\item For the (non-hierarchical) Kondo model:
$$\begin{array}{r@{\ }l}
\left<\psi_\alpha^{-}(0,t)\psi_\alpha^{+}(0,t')\right>\approx&\sum_m 2^{m}g_\psi^{[0]}(2^m(t-t')),\\[0.3cm]
\left<\varphi_\alpha^{-}(t)\varphi_\alpha^{+}(t')\right>\approx&\sum_m g^{[0]}_\varphi(2^m(t-t'))
\end{array}$$
\end{itemize}
\eject
\title{Hierarchical beta function}
\begin{itemize}
\item Compute $Z$ by $\mathcal V^{[0]}(t):=\mathcal V(t)$
$$
e^{-\int dt\ \mathcal V^{[m-1]}(t)}:=\left<e^{-\int dt\ \mathcal V^{[m]}(t)}\right>_m
$$
\item Effective potential:
$$
\int dt\ \mathcal V^{[m]}(t)=\sum_{i=1}^{2^{-m}}\mathcal V^{[m]}_{i,-}+\mathcal V^{[m]}_{i,+}
$$
\item Iteration
$$
\left<e^{-\int dt\ \mathcal V^{[m]}(t)}\right>_m=\prod_{i=1}^{2^{-m}}\left<e^{-(\mathcal V^{[m]}_{i,-}+\mathcal V_{i,+}^{[m]})}\right>_m
$$
\item By anti-commutation of the fields, $e^{-\mathcal V_{i,\pm}^{[m]}}$ is a polynomial in the fields of order $\leqslant 8$.
\end{itemize}
\eject
\title{Hierarchical beta function}
\begin{itemize}
\item The computation of the beta function reduces to computing the average of a degree-$16$ polynomial.
\item 4 running coupling constants $\ell_0,\cdots,\ell_3$:
$$
e^{-\int dt\ \mathcal V^{[m]}(t)}
=\sum_{i,\eta}\sum_{n=0}^3\ell_n^{[m]}O_{n}^{[\leqslant m]}(\Delta_{i,\eta})
$$
\end{itemize}
\eject
\title{Hierarchical beta function}
\begin{itemize}
\item Beta function ({\it exact})
$$\begin{array}{r@{\ }l}
C^{[m]}=&\displaystyle1+ 3\ell_0^2+9\ell_1^2+9\ell_2^2+324\ell_3^2\\[0.3cm]
\ell_0^{[m-1]}=&\displaystyle\frac1C\Big(\ell_0 +18\ell_0\ell_3+3 \ell_0\ell_2+3 \ell_0\ell_1 -2\ell_0^2\Big)\\[0.5cm]
\ell_1^{[m-1]}=&\displaystyle\frac1C\Big( \frac12\ell_1+9\ell_2\ell_3 +\frac14\ell_0^2\Big)\\[0.5cm]
\ell_2^{[m-1]}=&\displaystyle\frac1C\Big(2\ell_2+36\ell_1\ell_3+ \ell_0^2\Big)\\[0.5cm]
\ell_3^{[m-1]}=&\displaystyle\frac1C\Big(\frac12\ell_3+\frac14\ell_1\ell_2+\frac1{24} \ell_0^2\Big).
\end{array}$$
\end{itemize}
\eject
\title{Hierarchical beta function}
\begin{itemize}
\item Beta function ({\it exact})
$$\begin{array}{r@{\ }l}
C^{[m]}=&\displaystyle1+ 3\ell_0^2+9\ell_1^2+9\ell_2^2+324\ell_3^2\\[0.3cm]
\color{blue}\ell_0^{[m-1]}=&\color{blue}\displaystyle\frac1C\Big(\ell_0 +18\ell_0\ell_3+3 \ell_0\ell_2+3 \ell_0\ell_1 -2\ell_0^2\Big)\\[0.5cm]
\color{darkgreen}\ell_1^{[m-1]}=&\color{darkgreen}\displaystyle\frac1C\Big( \frac12\ell_1+9\ell_2\ell_3 +\frac14\ell_0^2\Big)\\[0.5cm]
\color{red}\ell_2^{[m-1]}=&\color{red}\displaystyle\frac1C\Big(2\ell_2+36\ell_1\ell_3+ \ell_0^2\Big)\\[0.5cm]
\color{darkgreen}\ell_3^{[m-1]}=&\color{darkgreen}\displaystyle\frac1C\Big(\frac12\ell_3+\frac14\ell_1\ell_2+\frac1{24} \ell_0^2\Big).
\end{array}$$
{\color{red}relevant}, {\color{blue}marginal}, {\color{darkgreen}irrelevant}
\end{itemize}
\eject
\title{Flow}
\vfil
\hfil\includegraphics[width=0.8\textwidth]{Figs/beta_phase.pdf}\par
Fixed points: $\bm\ell^{(0)}$, $\bm\ell^{(+)}$, $\bm\ell^*$, $\bm\ell^{(-)}$.
\eject
\title{Fixed points}
\begin{itemize}
\item $\bm\ell^{(0)}$: unstable.
\item $\bm\ell^{(+)}$: ferromagnetic ($\lambda_0>0$).
\item $\bm\ell^*$: anti-ferromagnetic ($\lambda_0<0$).
\end{itemize}
\eject
\title{Susceptibility}
\begin{itemize}
\item Add magnetic field $h$ on the impurity.
\item New term in the potential:
$$
-h \sum_{j\in\{1,2,3\}}\bm\omega_j \int dt\sum_{\alpha,\alpha'}\varphi^+_{\alpha}(t)\sigma^j_{\alpha,\alpha'} \varphi^-_{\alpha'}(t).
$$
\item 9 running coupling constants.
\item The susceptibility can be computed by deriving $C^{[m]}$ with respect to $h$.
\end{itemize}
\eject
\title{Kondo effect}
\begin{itemize}
\item Fix $h=0$.
\item At $\bm\ell^{(+)}$, the susceptibility diverges as $\beta$.
\item At $\bm\ell^*$, the susceptibility remains finite in the $\beta\to\infty$ limit.
\end{itemize}
\hfil\includegraphics[width=150pt]{Figs/susc_plot_temp.pdf}\par
\eject
\title{Open questions}
\begin{itemize}
\item Magnetic field on the chain as well. This requires defining the hierarchical model to reflect the $x$-dependence of $\psi(x,t)$.
\item Rigorous renormalization group analysis for the Kondo model (non-hierarchical).
\item The exact solvability of the hierarchical Kondo model is merely a consequence of the fermionic nature of the system. Other fermionic hierarchical models can be studied to investigate other non-perturbative phenomena, e.g. high-$T_c$ superconductivity.
\end{itemize}
\eject
\title{Epilogue: {\tt meankondo}}
\begin{itemize}
\item The computation in the $h$-dependent case requires computing 100 Feynman diagrams.
\item By adding the field on the entire chain (open problem), this number increases to 1089.
\item Software to perform the computation: {\tt meankondo}.
\item {\tt meankondo} can be configured to study any fermionic hierarchical model.
\end{itemize}
\hfil{\tt http://ian.jauslin.org/software/meankondo/}
\end{document}
|